Hoffman JI, Kaplan SJ. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.
Article
PubMed
Google Scholar
van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, ET AL. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.
PubMed
Google Scholar
Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56(14):1149–57.
Article
PubMed
Google Scholar
Cowan JR, Ware SM. Genetics and genetic testing in congenital heart disease. Clin Perinatol. 2015;42(2):373–93.
Article
PubMed
Google Scholar
Gelb BD. Genetic basis of congenital heart disease. Curr Opin Cardiol. 2004;19(2):110–5.
Article
PubMed
Google Scholar
Patel A, Costello JM, Backer CL, Pasquali SK, Hill KD, Wallace AS, et al. Prevalence of noncardiac and genetic abnormalities in neonates undergoing cardiac operations: analysis of the society of thoracic surgeons congenital heart surgery database. Ann Thorac Surg. 2016;102(5):1607–14.
Article
PubMed
PubMed Central
Google Scholar
Nikyar B, Sedehi M, Qorbani M, Nikyar A, Golalipour MJ. Ethnical variations in the incidence of congenital heart defects in gorgan, northern iran: a single-center study. 2014, 9(1):9–14.
Warnes CA. Sex differences in congenital heart disease: should a woman be more like a man? Circulation. 2008;118(1):3–5.
Article
PubMed
Google Scholar
Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gifford CA, Ranade SS, Samarakoon R, Salunga HT, de Soysa TY, Huang Y, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science. 2019;364(6443):865-870.
Article
CAS
Google Scholar
Nees SN, Chung WK. Genetic Basis of Human Congenital Heart Disease. Cold Spring Harb Perspect Biol. 2020;12(9):a036749.
Article
CAS
PubMed
Google Scholar
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the american heart association. Circulation. 2018;138(21):e653–711.
Article
PubMed
PubMed Central
Google Scholar
Mills R, Pittard W, Mullaney J, Farooq U, Creasy T, Mahurkar A, et al. Natural genetic variation caused by small insertions and deletions in the human genome. 2011;21(6):830–9.
CAS
Google Scholar
Abel H, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. 2013;206(12):432–40.
CAS
Google Scholar
Digilio MC, Romana Lepri F, Dentici ML, Henderson A, Baban A, Roberti MC, et al. Atrioventricular canal defect in patients with RASopathies. Eur J Hum Genet. 2013;21(2):200–4.
Article
CAS
PubMed
Google Scholar
Linglart L, Gelb BD. Congenital heart defects in Noonan syndrome: diagnosis, management, and treatment. 2020, 184(1):73–80.
Alongi AM, Kirklin JK, Deng L, Padilla L, Pavnica J, Romp RL, et al. Surgical management of heterotaxy syndrome: current challenges and opportunities. 2020;11(2):166–76.
Google Scholar
Liu C, Cao R, Xu Y, Li T, Li F, Chen S, et al. Rare copy number variants analysis identifies novel candidate genes in heterotaxy syndrome patients with congenital heart defects. Genome Med. 2018;10(1):40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Costain G, Silversides CK, Bassett AS. The importance of copy number variation in congenital heart disease. NPJ Genomic Med. 2016;1(1):16031.
Article
Google Scholar
Glessner JT, Bick AG, Ito K, Homsy J, Rodriguez-Murillo L, Fromer M, et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014;115(10):884–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Z, Zhang J, Hu P, Chen H, Xu J, Tian Q, et al. Low-pass whole-genome sequencing in clinical cytogenetics: a validated approach. 2016;18(9):940–8.
Costain G, Silversides CK, Bassett AS. The importance of copy number variation in congenital heart disease. NPJ Genom Med. 2016;1:16031.
Article
PubMed
PubMed Central
Google Scholar
Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, et al. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci USA. 2011;108(7):2915–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Castro M, Eldjouzi H, Charpentier E, Busson PF, Hauet Q, Lindenbaum P, et al. Search for rare copy-number variants in congenital heart defects identifies novel candidate genes and a potential role for FOXC1 in Patients With Coarctation of the Aorta. Circ Cardiovasc Genet. 2016;9(1):86–94.
Article
CAS
PubMed
Google Scholar
An Y, Duan W, Huang G, Chen X, Li L, Nie C, et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population. BMC Med Genom. 2016;9:2.
Article
CAS
Google Scholar
Costain G, Lionel A, Ogura L, Marshall C, Scherer S, Silversides C, et al. Genome-wide rare copy number variations contribute to genetic risk for transposition of the great arteries. 2016;204:115–21.
Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet. 2012;8(8):e1002843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr. 2008;153(6):807–13.
Article
PubMed
PubMed Central
Google Scholar
Calabrò R, Limongelli G. Complete atrioventricular canal. Orphanet J Rare Dis. 2006;1:8.
Article
PubMed
PubMed Central
Google Scholar
Garcia AM, Nakano SJ, Karimpour-Fard A, Nunley K, Blain-Nelson P, Stafford NM, et al. Phosphodiesterase-5 is elevated in failing single ventricle myocardium and affects cardiomyocyte remodeling in vitro. Circ Heart Fail. 2018;11(9):e004571.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelleri MC, Cicchini E, Locatelli C, Vitale L, Caracausi M, Piovesan A, et al. Systematic reanalysis of partial trisomy 21 cases with or without Down syndrome suggests a small region on 21q22. 13 as critical to the phenotype. Human Mol Genet. 2016;25(12):2525–38.
CAS
Google Scholar
Dobosz A, Bik-Multanowski M. Long-term trends in the prevalence of congenital heart defects in patients with Down syndrome in southern Poland. Devel Period Med. 2019;23(3):184–9.
Google Scholar
Diogenes TCP, Mourato FA, de Lima Filho JL, da Silva MS. Gender differences in the prevalence of congenital heart disease in Down’s syndrome: a brief meta-analysis. BMC Med Genet. 2017;18(1):111.
Article
PubMed
PubMed Central
Google Scholar
Bush D, Galambos C, Ivy D, Abman S, Wolter-Warmerdam K, Hickey F. Clinical characteristics and risk factors for developing pulmonary hypertension in children with down syndrome. 2018;202:212–9.
Pugnaloni F, Digilio MC, Putotto C, De Luca E, Marino B, Versacci P. Genetics of atrioventricular canal defects. Ital J Pediatr. 2020;46:1–13.
Article
Google Scholar
Li L, Huang L, Luo Y, Huang X, Lin S, Fang Q. Differing microdeletion sizes and breakpoints in chromosome 7q11.23 in williams-beuren syndrome detected by chromosomal microarray analysis. Mol Syndromol. 2016;6(6):268–75.
Pober B. Williams-Beuren syndrome. 2010;362(3):239–52.
Pober BR, Johnson M, Urban Z. Mechanisms and treatment of cardiovascular disease in Williams-Beuren syndrome. J Clin Investig. 2008;118(5):1606–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verheij J, de Munnik S, Dijkhuizen T, de Leeuw N, Olde Weghuis D, van den Hoek G, et al. An 8.35 Mb overlapping interstitial deletion of 8q24 in two patients with coloboma, congenital heart defect, limb abnormalities, psychomotor retardation and convulsions. Eur J Med Genet. 2009;52(5):353–7.
Article
CAS
PubMed
Google Scholar
Dauber A, Golzio C, Guenot C, Jodelka FM, Kibaek M, Kjaergaard S, et al. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24. 3 copy-number variant. Am J Hum Genet. 2013;93(5):798–811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bluhm A, Viceconte N, Li F, Rane G, Ritz S, Wang S, et al. ZBTB10 binds the telomeric variant repeat TTGGGG and interacts with TRF2. Nucleic Acids Res. 2019;47(4):1896–907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lahm H, Jia M, Dressen M, Wirth F, Puluca N, Gilsbach R, et al. Genome-wide association study in European patients with congenital heart disease identifies risk loci for transposition of the great arteries and anomalies of the thoracic arteries and veins and expression of discovered candidate genes in the developing heart. bioRxiv 2020.
Nectoux J, Florian C, Delepine C, Bahi-Buisson N, Khelfaoui M, Reibel S, et al. Altered microtubule dynamics in Mecp2-deficient astrocytes. J Neurosci Res. 2012;90(5):990–8.
Article
CAS
PubMed
Google Scholar
Radhakrishna U, Albayrak S, Zafra R, Baraa A, Vishweswaraiah S, Veerappa AM, et al. Placental epigenetics for evaluation of fetal congenital heart defects: Ventricular Septal Defect (VSD). PloS one. 2019;14(3):e0200229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M, et al. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44(9):518–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, et al. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases. PLoS One. 2014;9(8):e104535.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rydeen AB, Waxman JS. Cyp26 enzymes facilitate second heart field progenitor addition and maintenance of ventricular integrity. PLoS Biol. 2016;14(11):e2000504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bittel DC, Kibiryeva N, O’Brien JE, Lofland GK, Butler MG. Gene expression in pediatric heart disease with emphasis on conotruncal defects. Prog Pediatr Cardiol. 2005;20(2):127–41.
Article
PubMed
PubMed Central
Google Scholar
Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One. 2011;6(8):e23657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mommersteeg MT, Yeh ML, Parnavelas JG, Andrews WD. Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves. Cardiovasc Res. 2015;106(1):55–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fotiou E, Williams S, Martin-Geary A, Robertson DL, Tenin G, Hentges KE, et al. Integration of large-scale genomic data sources with evolutionary history reveals novel genetic loci for congenital heart disease. Circ Genom Precis Med. 2019;12(10):e002694.
Article
PubMed Central
CAS
Google Scholar
Geng J, Picker J, Zheng Z, Zhang X, Wang J, Hisama F, et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics. 2014;15(1):1127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee MY, Won HS, Han YJ, Ryu HM, Lee DE, Jeong BD. Clinical value of chromosomal microarray analysis in prenatally diagnosed dextro-transposition of the great arteries. J Matern Fetal Neonatal Med. 2020;33(9):1480–5.
Article
PubMed
Google Scholar
Song T, Wan S, Li Y, Xu Y, Dang Y, Zheng Y, et al. Detection of copy number variants using chromosomal microarray analysis for the prenatal diagnosis of congenital heart defects with normal karyotype. J Clin Lab Anal. 2019;33(1):e22630.
Wu X, Li R, Fu F, Pan M, Han J, Yang X, et al. Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatr. 2017;17(1):117.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Chang X, Glessner J, Qu H, Tian L, Li D, et al. Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios. Front Genet. 2019;10:819.
Article
CAS
PubMed
PubMed Central
Google Scholar