Hogan MC, Foreman KJ, Naghavi M, Ahn SY, Wang M, Makela SM, et al. Maternal mortality for 181 countries, 1980–2008: a systematic analysis of progress towards Millennium development goal 5. Lancet. 2010;375(9726):1609–23.
Article
Google Scholar
Wanderer JP, Leffert LR, Mhyre JM, Kuklina EV, Callaghan WM, Bateman BT. Epidemiology of obstetric-related ICU admissions in Maryland: 1999–2008*. Crit Care Med. 2013;41(8):1844–52.
Article
Google Scholar
Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275–89.
Article
Google Scholar
Bianco-Miotto T, Mayne BT, Buckberry S, Breen J, Rodriguez Lopez CM, Roberts CT. Recent progress towards understanding the role of DNA methylation in human placental development. Reproduction. 2016;152(1):R23-30.
Article
CAS
Google Scholar
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The role of epigenetics in placental development and the etiology of preeclampsia. Int J Mol Sci. 2019;20(11):2837.
Article
CAS
Google Scholar
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–24.
Article
CAS
Google Scholar
Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613.
Article
CAS
Google Scholar
Han M, Liu Z, Xu Y, Liu X, Wang D, Li F, et al. Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Front Neurosci. 2020;14:98.
Article
Google Scholar
Vanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell. 2017;67(6):1059–67.
Article
Google Scholar
Song T, Lu J, Deng Z, Xu T, Yang Y, Wei H, et al. Maternal obesity aggravates the abnormality of porcine placenta by increasing N6-methyladenosine. Int J Obes (Lond). 2018;42(10):1812–20.
Article
CAS
Google Scholar
Zhang X, Zhang S, Yan X, Shan Y, Liu L, Zhou J, et al. m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of periodontitis. J Cell Mol Med. 2021;25(7):3634–45.
Article
CAS
Google Scholar
Novakovic B, Saffery R. The ever growing complexity of placental epigenetics–role in adverse pregnancy outcomes and fetal programming. Placenta. 2012;33(12):959–70.
Article
CAS
Google Scholar
Taniguchi K, Kawai T, Kitawaki J, Tomikawa J, Nakabayashi K, Okamura K, et al. Epitranscriptomic profiling in human placenta: N6-methyladenosine modification at the 5ʹ-untranslated region is related to fetal growth and preeclampsia. FASEB J. 2020;34(1):494–512.
Article
CAS
Google Scholar
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.
Article
CAS
Google Scholar
ACOG Practice Bulletin No. 202 summary: gestational hypertension and preeclampsia. Obstet Gynecol. 2019;133(1):1.
Google Scholar
Palei AC, Spradley FT, Warrington JP, George EM, Granger JP. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol (Oxf). 2013;208(3):224–33.
Article
CAS
Google Scholar
Gu Y, Chu X, Morgan JA, Lewis DF, Wang Y. Upregulation of METTL3 expression and m6A RNA methylation in placental trophoblasts in preeclampsia. Placenta. 2021;103:43–9.
Article
CAS
Google Scholar
Wang J, Gao F, Zhao X, Cai Y, Jin H. Integrated analysis of the transcriptome-wide m6A methylome in preeclampsia and healthy control placentas. PeerJ. 2020;8:e9880.
Article
Google Scholar
Bennett WA, Lagoo-Deenadayalan S, Stopple JA, Barber WH, Hale E, Brackin MN, et al. Cytokine expression by first-trimester human chorionic villi. Am J Reprod Immunol. 1998;40(5):309–18.
Article
CAS
Google Scholar
Formby B. Immunologic response in pregnancy. Its role in endocrine disorders of pregnancy and influence on the course of maternal autoimmune diseases. Endocrinol Metab Clin North Am. 1995;24(1):187–205.
Article
CAS
Google Scholar
Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci. 2010;17(3):209–18.
Article
CAS
Google Scholar
Raghupathy R. Cytokines as key players in the pathophysiology of preeclampsia. Med Princ Pract. 2013;22(Suppl 1):8–19.
Article
Google Scholar
Liu C, Yang Z, Li R, Wu Y, Chi M, Gao S, Sun X, Meng X, Wang B. Potential roles of N6-methyladenosine (m6A) in immune cells. J Transl Med. 2021;19(1):251.
Article
CAS
Google Scholar
Yiyenoğlu ÖB, Uğur MG, Özcan HÇ, Can G, Öztürk E, Balat Ö, et al. Assessment of oxidative stress markers in recurrent pregnancy loss: a prospective study. Arch Gynecol Obstet. 2014;289(6):1337–40.
Article
Google Scholar
Lockwood CJ, Yen CF, Basar M, Kayisli UA, Martel M, Buhimschi I, et al. Preeclampsia-related inflammatory cytokines regulate interleukin-6 expression in human decidual cells. Am J Pathol. 2008;172(6):1571–9.
Article
CAS
Google Scholar
LaMarca B, Parrish MR, Wallace K. Agonistic autoantibodies to the angiotensin II type I receptor cause pathophysiologic characteristics of preeclampsia. Gend Med. 2012;9(3):139–46.
Article
Google Scholar
Gadonski G, LaMarca BB, Sullivan E, Bennett W, Chandler D, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension. 2006;48(4):711–6.
Article
CAS
Google Scholar
Kumagai A, Itakura A, Koya D, Kanasaki K. AMP-activated protein (AMPK) in pathophysiology of pregnancy complications. Int J Mol Sci. 2018;19(10):3076.
Article
Google Scholar
Gualdoni GA, Mayer KA, Göschl L, Boucheron N, Ellmeier W, Zlabinger GJ. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J. 2016;30(11):3800–9.
Article
CAS
Google Scholar
Liu QY, Lei JX, LeBlanc J, Sodja C, Ly D, Charlebois C, et al. Regulation of DNaseY activity by actinin-alpha4 during apoptosis. Cell Death Differ. 2004;11(6):645–54.
Article
CAS
Google Scholar
Lomert E, Turoverova L, Kriger D, Aksenov ND, Nikotina AD, Petukhov A, et al. Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells. Cell Cycle. 2018;17(5):616–26.
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;75(4):475–87.
Article
CAS
Google Scholar
Li DQ, Nair SS, Kumar R. The MORC family: new epigenetic regulators of transcription and DNA damage response. Epigenetics. 2013;8(7):685–93.
Article
CAS
Google Scholar
Jongsma ML, Berlin I, Wijdeven RH, Janssen L, Janssen GM, Garstka MA, et al. An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell. 2016;166(1):152–66.
Article
CAS
Google Scholar
Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L, et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog. 2014;10(9):e1004358.
Article
Google Scholar
Wilson SL, Leavey K, Cox BJ, Robinson WP. Mining DNA methylation alterations towards a classification of placental pathologies. Hum Mol Genet. 2018;27(1):135–46.
Article
CAS
Google Scholar