Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistic. CA Cancer J Clin. 2021;71(1):7–33.
Article
Google Scholar
Chen S, Shen J, Zhao J, et al. Magnolol suppresses pancreatic cancer development in vivo and in vitro via negatively regulating TGF-β/Smad signaling. Front Oncol. 2020;10:597672. https://doi.org/10.3389/fonc.2020.597672.
Article
Google Scholar
Capello M, Bantis LE, Scelo G, et al. Sequential validation of blood-based protein biomarker candidates for early-stage pancreatic cancer. J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djw266.
Article
Google Scholar
Anastasiadou E, Jacob LS, Slack FJ. non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.
Article
CAS
Google Scholar
Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech. 2020;1863(6): 194417.
Article
CAS
Google Scholar
Tay Y, Rinn J, Pandolfifi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.
Article
CAS
Google Scholar
Wang Z, Ji X, Gao L, et al. In silicocomprehensive analysis of a novel serum exosome-derived competitive endogenous RNA network for constructing a prognostic model for glioblastoma. Front Oncol. 2021;11:553594. https://doi.org/10.3389/fonc.2021.553594.
Google Scholar
Xiao J, Lv C, Xiao C, et al. Construction of a ceRNA network and analysis of tumor immune infiltration in pancreatic adenocarcinoma. Front Mol Biosci. 2021;8:745409. https://doi.org/10.3389/fmolb.2021.745409.
Article
Google Scholar
Molibeli KM, Hu R, Liu Y, et al. Potential clinical applications of exosomal circular RNAs: more than diagnosis. Front Mol Biosci. 2021;8:769832. https://doi.org/10.3389/fmolb.2021.769832.
Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):47.
Article
CAS
Google Scholar
Bei Y, Das S, Rodosthenous RS, et al. Extracellular vesicles in cardiovascular theranostics. Theranos-tics. 2017;7(17):4168–82.
Article
CAS
Google Scholar
Xie Z, Gao Y, Ho C, et al. Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut. 2021;71(3):568–579.
Article
Google Scholar
Li S, Li Y, Chen B, et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;01(04):46.
Google Scholar
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.
Article
CAS
Google Scholar
Liu S, Xie X, Lei H, et al. Identification of key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in preeclampsia using bioinformatics analysis. Med Sci Monit. 2019;05:25.
Google Scholar
Jeggari A, Marks DS, Larsson E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics. 2012;28(15):2062–2063.
Article
CAS
Google Scholar
Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92-7.
Article
CAS
Google Scholar
LiJH,LiuS,ZhouH, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:92–97.
Liu M, Wang Q, Shen J, et al. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899–905.
Article
Google Scholar
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
Article
CAS
Google Scholar
Cao H, Cheng HS, Wang JK, et al. A 3D physio-mimetic interpenetrating network-based platform to decode the pro and anti-tumorigenic properties of cancer-associated fibroblasts. Acta Biomater. 2021;09(15):132.
Google Scholar
Zhang X, Shi S, Zhang B, et al. Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopess. Am J Cancer Res. 2018;8(3):332–53.
CAS
Google Scholar
Jin H, Liu P, Wu Y, et al. Exosomal zinc transporter ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer. Cancer Sci. 2018;109(9):2946–56.
Article
CAS
Google Scholar
Zhang Y, Liu Q, Zhang X, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology. 2022;20(1):279.
Article
Google Scholar
Ansari MA, Thiruvengadam M, Venkidasamy B, et al. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: current status and future perspectives. Semin Cancer Biol. 2022;86(Pt 2):678–96.
Tickner JA, Urquhart AJ, Stephenson SA, et al. Functions and therapeutic roles of exosomes in cancer. Front Oncol. 2014;4:127.
Article
Google Scholar
Szajnik M, Derbis M, Lach M, et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunny- vale). 2013;Suppl 4:3.
Erb U, Zöller M. Progress and potential of exosome analysis for early pancreatic cancer detection. Expert Rev Mol Diagn. 2016;16(7):757–67.
Article
CAS
Google Scholar
Fakih M, Ouyang M, Wang C, et al. Immune overdrive signature in colorectal tumor subset predicts poor clinical outcome. J Clin Invest. 2019;129(10):4464–76.
Article
Google Scholar
Cheng C, Liu D, Liu Z, et al. Positive feedback regulation of lncRNA TPT1-AS1 and ITGB3 promotes cell growth and metastasis in pancreatic cancer. Cancer Sci 2022;113(9):2986–3001.
Chen J, Li Q, An Y, et al. CEACAM6 induces epithelial-mesenchymal transition and mediates invasion and metastasis in pancreatic cancer. Int J Oncol. 2013;43(3):877–85.
Article
CAS
Google Scholar
Li Y, Li Y, Luo J, et al. FAM126A interacted with ENO1 mediates proliferation and metastasis in pancreatic cancer via PI3K/AKT signaling pathway. Cell Death Discov. 2022;8(1):248.
Google Scholar
Zeng Y, Zhang H, Zhu M, et al. β-Hydroxyisovaleryl-Shikonin Exerts an Anti-tumor Effect on Pancreatic Cancer Through the PI3K/AKT Signaling Pathway. Front Oncol. 2022;12:904258. https://doi.org/10.3389/fonc.2022.904258.
Wu W, Li Q, Zhu Z, et al. HTR1D functions as a key target of HOXA10-AS/miR-340–3p axis to promote the malignant outcome of pancreatic cancer via PI3K-AKT signaling pathway. Int J Biol Sci. 2022;18(9):3777–94.
Article
CAS
Google Scholar
Zhou Y, Zhu Y, Dong X, et al. Exosomes derived from pancreatic cancer cells induce osteoclast differentiation through the miR125a-5p/TNFRSF1B pathway. Onco Targets Ther. 2021;14:2727–39.
Article
Google Scholar
Sohrabi E, Rezaie E, Heiat M, et al. An integrated data analysis of mRNA, miRNA and signaling pathways in pancreatic cancer. Biochem Genet. 2021;59(5):1326–58.
Article
CAS
Google Scholar
Shang M, Zhang L, Chen X, et al. Identification of hub genes and regulators associated with pancreatic ductal adenocarcinoma based on integrated gene expression profile analysis. Discov Med. 2019;28(153):159–72.
Google Scholar
Zhu H, Gao W, Li X, et al. S100A14 promotes progression and gemcitabine resistance in pancreatic cancer. Pancreatology. 2021;21(3):589–98.
Article
CAS
Google Scholar
Treiber M, Schulz HU, Landt O, et al. Keratin 8 sequence variants in patients with pancreatitis and pancreatic cancer. J Mol Med (Berl). 2006;84(12):1015–22.
Article
CAS
Google Scholar
Fang J, Wang H, Liu Y, et al. High KRT8 expression promotes tumor progression and metastasis of gastric cancer. Cancer Sci. 2017;108(2):178–86.
Article
CAS
Google Scholar
Huang X, Liu F, Jiang Z, et al. CREB1 suppresses transcription of microRNA-186 to promote growth, invasion and epithelial-mesenchymal transition of gastric cancer cells through the KRT8/HIF-1α axis. Cancer Manag Res. 2020;12:9097–111.
Article
CAS
Google Scholar
Pistoni L, Gentiluomo M, Lu Y, et al. Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. Carcinogenesis. 2021;42(8):1037–45.
Article
Google Scholar
Qiu J, Du Z, Wang Y, et al. Weighted gene co-expression network analysis reveals modules and hub genes associated with the development of breast cancer. Medicine (Baltimore). 2019;98(6):e14345. https://doi.org/10.1097/MD.0000000000014345.
Wang Z, Moresco P, Yan R, et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Proc Natl Acad Sci U S A. 2022;119(4):e2119436119. https://doi.org/10.1073/pnas.2119463119.
Article
Google Scholar
Li W, Li T, Sun C, et al. Identification and prognostic analysis of biomarkers to predict the progression of pancreatic cancer patients. Mol Med. 2022;28(1):43.
Article
Google Scholar
Wang W, Lou W, Ding B, et al. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging (Albany NY). 2019;11(9):2610–27.
Article
CAS
Google Scholar
Eguchi D, Ohuchida K, Kozono S, et al. MAL2 expression predicts distant metastasis and short survival in pancreatic cancer. Surgery. 2013;154(3):573–82.
Article
Google Scholar
Zhang B, Xiao J, Cheng X, et al. MAL2 interacts with IQGAP1 to promote pancreatic cancer progression by increasing ERK1/2 phosphorylation[J]. Biochem Biophys Res Commun. 2021;05(21):554.
Google Scholar
Du Y, Gu Z, Li Z, et al. Dynamic Interplay between structural variations and 3D genome organization in pancreatic cancer. Adv Sci (Weinh). 2022;9(18):e2200818. https://doi.org/10.1002/advs.202200818.
Wolpin BM, OReilly BM, Ko YJ, et al. Global, multicenter, randomized, phase II trial of gemcitabine and gemcitabine plus AGS-1C4D4 in patients with previously untreated, metastatic pancreatic cancer. Ann Oncol. 2013;24(7):1792–801.
Article
CAS
Google Scholar
Mohammed S, Sukumaran S, Bajgain P, et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther. 2017;25(1):249–58.
Article
CAS
Google Scholar
Bossow S, Grossardt C, Temme A, et al. Armed and targeted measles virus for chemovirotherapy of pancreatic cancer. Cancer Gene Ther. 2011;18:598–608.
Article
CAS
Google Scholar
Katari UL, Keirnan JM, Worth AC, et al. Engineered T cells for pancreatic cancer Treatment. HPB (Oxford). 2011;13:643–50.
Article
Google Scholar