Smigal C, Jemal A, Ward E, Cokkinides V, Smith R, Howe HL, Thun M: Trends in breast cancer by race and ethnicity: update 2006. CA Cancer J Clin. 2006, 56: 168-183.
Article
PubMed
Google Scholar
Shek LL, Dodolphin W: Survival with breast cancer: the importance of estrogen receptor quantity. Eur J Cancer Clin Oncol. 1989, 25: 243-250. 10.1016/0277-5379(89)90015-1.
Article
CAS
PubMed
Google Scholar
Shen Q, Brown PH: Transgenic mouse models for the prevention of breast cancer. Mutat Res. 2005, 576: 93-110.
Article
CAS
PubMed
Google Scholar
Mehta K: Retinoids as regulators of gene transcription. J Biol Regul Homeost Agents. 2003, 17: 1-12.
CAS
PubMed
Google Scholar
Pemrick SM, Lucas DA, Grippo JF: The retinoid receptors. Leukemia. 1994, 8: 1797-1806.
CAS
PubMed
Google Scholar
Wu K, Kim H, Rodriguez JL, Hilsenbeck SG, Mohsin SK, Xu X, Lamph WW, Kuhn JG, Green JE, Brown PH: Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol Biomarkers Prev. 2002, 11: 467-474.
CAS
PubMed
Google Scholar
Wu K, Zhang Y, Xu X, Hill J, Celestino J, Kim H, Mohsin SK, Hilsenbeck SG, Lamph WW, Bissonette R, Brown PH: The retinoid × receptor-selective retinoid, LGD prevent the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res. 2002, 62: 6376-80.
CAS
PubMed
Google Scholar
Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ: Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastaic disease. Proc Natl Acad Sci USA. 1992, 89: 10578-82. 10.1073/pnas.89.22.10578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green J, Shibata M, Yoshidome K, Liu M, Jorcyk C, Anver M, Wigginton J, Wiltrout R, Shibata E, Kaczmarczyk S, Wang W, Liu Z, Calvo A, Couldrey C: The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene. 2000, 19: 1020-27. 10.1038/sj.onc.1203280.
Article
CAS
PubMed
Google Scholar
Jerry DJ, Kittrell FS, Kuperwasser C, Laucirica R, Dickinson ES, Bonilla PJ, Butel JS, Medina D: A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene. 2000, 19: 1052-8. 10.1038/sj.onc.1203270.
Article
CAS
PubMed
Google Scholar
Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, Gaddis S, MacLeod MC, Aldaz CM: Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res. 2000, 60: 5977-83.
CAS
PubMed
Google Scholar
Aldaz CM, Hu Y, Daniel R, Gaddis S, Kittrell F, Medina D: Serial analysis of gene expression in normal p53 null mammary epithelium. Oncogene. 2002, 21: 6366-6376. 10.1038/sj.onc.1205816.
Article
CAS
PubMed
Google Scholar
Audic S, Claverie J: The significance of digital gene expression profiles. Genome Res. 1997, 7: 986-995.
CAS
PubMed
Google Scholar
Smid M, Dorssers LCJ, Jenster G: Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Bioinformatic. 2003, 19: 2065-2071. 10.1093/bioinformatics/btg282.
Article
CAS
Google Scholar
Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA: Identifying biological themes within lists of genes with EASE. Genome Biol. 2003, 4: R70-10.1186/gb-2003-4-10-r70.
Article
PubMed
PubMed Central
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4: R60-10.1186/gb-2003-4-9-r60.
Article
PubMed Central
Google Scholar
Von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, 33: D433-D437. 10.1093/nar/gki005.
Article
CAS
PubMed
Google Scholar
Von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Krüger B, Snel B, Bork P: STRING 7-recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 2007, 35: D358-D362. 10.1093/nar/gkl825.
Article
CAS
PubMed
Google Scholar
Kim H, Kong G, DeNardo D, Li Y, Uray I, Pal S, Mohsin S, Hilsenbeck SG, Bissonnette R, Lamph WW, Johnson K, Brown PH: Identification of biomarkers modulated by the rexinoid LGD1069 (Bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res. 2006, 66: 12009-18. 10.1158/0008-5472.CAN-05-2515.
Article
CAS
PubMed
Google Scholar
Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. Science. 1997, 276: 1268-1272. 10.1126/science.276.5316.1268.
Article
CAS
PubMed
Google Scholar
Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM, Madden SL, Sukumar S: Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res. 1999, 59: 5464-5470.
CAS
PubMed
Google Scholar
Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, Riggins G, Polyak K: A SAGE (Serial Analysis of Gene Expression) view of breast tumor progression. Cancer Res. 2001, 61: 5697-5702.
CAS
PubMed
Google Scholar
Abba MC, Drake JA, Hawkins KA, Hu Y, Sun H, Notcovich C, Gaddis S, Sahin A, Baggerly K, Aldaz CM: Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res. 2004, 6: R499-R513. 10.1186/bcr899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Sun H, Drake J, Kittrell F, Abba MC, Deng L, Gaddis S, Sahin A, Baggerly K, Medina D, Aldaz CM: From mice to humans: identification of commonly deregulated genes in mammary cancer via comparative SAGE studies. Cancer Res. 2004, 64: 7748-55. 10.1158/0008-5472.CAN-04-1827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R, Telerman A: Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA. 2002, 99: 14976-14981. 10.1073/pnas.222470799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A: Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci USA. 2003, 100: 13892-13897. 10.1073/pnas.2335950100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.
Article
CAS
PubMed
Google Scholar
Ramanathan A, Wang C, Schreiber SL: Perturbationl profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA. 2005, 102: 5992-5997. 10.1073/pnas.0502267102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz TJ, Thierbach R, Voigt A, Drewes G, Mietzner B, Steinberg P, Pfeiffer AFH, Ristow M: Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth. J Biol Chem. 2006, 281: 977-981. 10.1074/jbc.M511064200.
Article
CAS
PubMed
Google Scholar
Isidoro A, Martínez M, Fernández PL, Ortega AD, Santamaría G, Chamorro M, Reed JC, Cuezva JM: Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J. 2004, 378: 17-20. 10.1042/BJ20031541.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Vara JAF, Belda-Iniesta C, González-Barón M, Cuezva JM: Breast carcinoma fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis. 2005, 26: 2095-2104. 10.1093/carcin/bgi188.
Article
CAS
PubMed
Google Scholar
Dey R, Moraes CT: Lack of oxidative phosphorylation and lowmitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem. 2000, 275: 7087-7094. 10.1074/jbc.275.10.7087.
Article
CAS
PubMed
Google Scholar
Hammamieh R, Chakraborty N, Barmada M, Das R, Jett M: Expresión patterns of fatty acid binding proteins in breast cancer cells. J Exp Ther Oncol. 2005, 5: 133-43.
CAS
PubMed
Google Scholar
Buhlmann C, Börchers T, Pollak M, Spener F: Fatty acid metabolism in human breast cancer cells (MCF7) transfected with heart-type fatty acid binding protein. Mol Cell Biochem. 1999, 199: 41-8. 10.1023/A:1006986629206.
Article
CAS
PubMed
Google Scholar
Grisendi S, Mecucci C, Falini B, Pandolfi PP: Nucleophosmin and cancer. Nature Rev Cancer. 2006, 6: 493-505. 10.1038/nrc1885.
Article
CAS
Google Scholar
Ye K: Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. Cancer Biol Ther. 2005, 4: 918-923. 10.1158/1535-7163.MCT-04-0347.
Article
CAS
PubMed
Google Scholar
Skaar TC, Prasad SC, Sharareh S, Lippman ME, Brunner N, Clarke R: Two-dimensional gel electrophoresis analyses identify nucleophosmin as an estrogen regulated protein associated with acquired estrogen-independence in human breast cancer cells. J Steroid Biochem Mol Biol. 1998, 67: 391-402. 10.1016/S0960-0760(98)00142-3.
Article
CAS
PubMed
Google Scholar
Jianq PS, Yung BY: Dowm-regulation of nucleophomin/B23 mRNA delays the entry of cells into mitosis. Biochem Biophys Res Commun. 1999, 257: 865-70. 10.1006/bbrc.1999.0551.
Article
Google Scholar
Wu HL, Hsu CY, Liu WH, Yunq BY: Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity. Int J Cancer. 1999, 81: 923-9. 10.1002/(SICI)1097-0215(19990611)81:6<923::AID-IJC14>3.0.CO;2-D.
Article
CAS
PubMed
Google Scholar
Hsu CY, Yung BY: Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis. Int J Cancer. 2000, 88: 392-400. 10.1002/1097-0215(20001101)88:3<392::AID-IJC11>3.0.CO;2-7.
Article
CAS
PubMed
Google Scholar
Bieche I, Lachkar S, Becette V, Cifuentes-Diaz C, Sobel A, Lidereau R, Curmi P: Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer. 1998, 78: 701-709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barket J, Lukas J: p27 destruction:Cks1 pulls the trigger. Nat Cell Biol. 2001, 3: E95-8.
Google Scholar
Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A: Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem. 2003, 278: 25752-7. 10.1074/jbc.M301774200.
Article
CAS
PubMed
Google Scholar
Slotky M, Shapira M, Ben-Izhak O, Linn S, Futerman B, Tsalic M, Hershko DD: The expression of the ubiquitina ligase subunit Cks1 in human breast cancer. Breast Cancer Res. 2005, 7: R737-R744. 10.1186/bcr1278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang L, Zhao M, Xu Z, Yokoyama KK, Li T: Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J. 2003, 370: 195-203. 10.1042/BJ20020656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inohara N, Koseki T, Chen S, Wu X, Núñez G: CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J. 1998, 17: 2526-2533. 10.1093/emboj/17.9.2526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morita K, Furuse M, Fujimoto K, Tsukita S: Claudin multigene family encoding four-transmembrane domain protein components of tigh junction strands. Proc Natl Acad Sci USA. 1999, 96: 511-516. 10.1073/pnas.96.2.511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal R, D'Souza T, Morin PJ: Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res. 2005, 65: 7378-7385. 10.1158/0008-5472.CAN-05-1036.
Article
CAS
PubMed
Google Scholar
Long H, Crean CD, Lee WH, Cummings OW, Gabig TG: Expression of Clostridium perfringes enetrotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res. 2001, 61: 7878-7881.
CAS
PubMed
Google Scholar
Rangel LBA, Agarwal R, D'Souza T, Pizer ES, Alò PL, Lancaster WD, Gregoire L, Schwartz DR, Cho KR, Morin PJ: Tight junction proteins Claudin-3 and Claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res. 2003, 9: 2567-2575.
CAS
PubMed
Google Scholar
Hewitt KJ, Agarwal R, Morin PJ: The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006, 6: 186-10.1186/1471-2407-6-186.
Article
PubMed
PubMed Central
Google Scholar
Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry J, Scolyer RA, Davies MJ, Heinzelmann M, Kalish LH, Bali A, Kench JG, Edwards LS, Bergh Vanden PM, Hacker NF, Sutherland RL, O'Brien PM: Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin Cancer Res. 2004, 10: 4427-4436. 10.1158/1078-0432.CCR-04-0073.
Article
CAS
PubMed
Google Scholar