Sutton MG, Sharpe N: Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000, 101: 2981-2988. 10.1161/01.CIR.101.25.2981.
Article
CAS
PubMed
Google Scholar
Takano H, Hasegawa H, Nagai T, Komuro I: Implication of cardiac remodeling in heart failure: mechanisms and therapeutic strategies. Intern Med. 2003, 42: 465-469. 10.2169/internalmedicine.42.465.
Article
CAS
PubMed
Google Scholar
Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG: The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010, 48: 504-511. 10.1016/j.yjmcc.2009.07.015.
Article
CAS
PubMed
Google Scholar
Okamoto H, Imanaka-Yoshida K: Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther. 2012, 30: e198-209. 10.1111/j.1755-5922.2011.00276.x.
Article
CAS
PubMed
Google Scholar
Sharma UC, Pokharel S, Evelo CT, Maessen JG: A systematic review of large scale and heterogeneous gene array data in heart failure. J Mol Cell Cardiol. 2005, 38: 425-432. 10.1016/j.yjmcc.2004.12.016.
Article
CAS
PubMed
Google Scholar
Asakura M, Kitakaze M: Global gene expression profiling in the failing myocardium. Circ J. 2009, 73: 1568-1576. 10.1253/circj.CJ-09-0465.
Article
CAS
PubMed
Google Scholar
Schwientek P, Ellinghaus P, Steppan S, D'Urso D, Seewald M, Kassner A, Cebulla R, Schulte-Eistrup S, Morshuis M, Röfe D, El Banayosy A, Körfer R, Milting H: Global gene expression analysis in nonfailing and failing myocardium pre- and postpulsatile and nonpulsatile ventricular assist device support. Physiol Genomics. 2010, 42: 397-405. 10.1152/physiolgenomics.00030.2010.
Article
CAS
PubMed
Google Scholar
Jin H, Yang R, Awad TA, Wang F, Li W, Williams SP, Ogasawara A, Shimada B, Williams PM, de Feo G, Paoni NF: Effects of early angiotensin-converting enzyme inhibition on cardiac gene expression after acute myocardial infarction. Circulation. 2001, 103: 736-742. 10.1161/01.CIR.103.5.736.
Article
CAS
PubMed
Google Scholar
Brooks WW, Shen S, Conrad CH, Goldstein RH, Deng LL, Bing OH: Transcriptional changes associated with recovery from heart failure in the SHR. J Mol Cell Cardiol. 2010, 49: 390-401. 10.1016/j.yjmcc.2010.06.002.
Article
CAS
PubMed
Google Scholar
Azuaje F, Zhang L, Jeanty C, Puhl SL, Rodius S, Wagner DR: Analysis of a gene co-expression network establishes robust association between Col5a2 and ischemic heart disease. BMC Med Genomics. 2013, 6: 13-10.1186/1755-8794-6-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ojaimi C, Qanud K, Hintze TH, Recchia FA: Altered expression of a limited number of genes contributes to cardiac decompensation during chronic ventricular tachypacing in dogs. Physiol Genomics. 2007, 29: 76-83.
Article
CAS
PubMed
Google Scholar
Prat-Vidal C, Gálvez-Montón C, Nonell L, Puigdecanet E, Astier L, Solé F, Bayes-Genis A: Identification of temporal and region-specific myocardial gene expression patterns in response to infarction in swine. PLoS One. 2013, 8: e54785-10.1371/journal.pone.0054785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan Tan FL, Moravec CS, Li J, Apperson-Hansen C, McCarthy PM, Young JB, Bond M: The gene expression fingerprint of human heart failure. Proc Natl Acad Sci U S A. 2002, 99: 11387-11392. 10.1073/pnas.162370099.
Article
Google Scholar
Felkin LE, Lara-Pezzi EA, Hall JL, Birks EJ, Barton PJ: Identification of genes related to heart failure using global gene expression profiling of human failing myocardium. Biochem Biophys Res Commun. 2010, 393: 55-60. 10.1016/j.bbrc.2010.01.076.
Article
Google Scholar
Fang L, Du XJ, Gao XM, Dart AM: Activation of peripheral blood mononuclear cells and extracellular matrix and inflammatory gene profile in acute myocardial infarction. Clin Sci (Lond). 2010, 119: 175-183. 10.1042/CS20100011.
Article
CAS
Google Scholar
Maczewski M, Maczewska J: Hypercholesterolemia exacerbates ventricular remodeling in the rat model of myocardial infarction. J Card Fail. 2006, 12: 399-405. 10.1016/j.cardfail.2006.03.005.
Article
CAS
PubMed
Google Scholar
Mohr S, Liew CC: The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med. 2007, 13: 422-432. 10.1016/j.molmed.2007.08.003.
Article
CAS
PubMed
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30: e36-10.1093/nar/30.9.e36.
Article
PubMed
PubMed Central
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal controlgenes. Genome Biol. 2002, 18: 3(7).
Google Scholar
Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M: A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 2010, 50 (4): S1-5. 10.1016/j.ymeth.2010.01.005.
Article
CAS
PubMed
Google Scholar
Pfeffer MA, Janice M: Memorial lecture. J of Card Fail. 2002, 8 (6 Suppl): S248-S252.
Article
Google Scholar
Mackiewicz U, Maczewski M, Klemenska E, Brudek M, Konior A, Czarnowska E, Lewartowski BJ: Brief postinfarction calcineurin blockade affects left ventricular remodeling and Ca2+ handling in the rat. Mol Cell Cardiol. 2010, 48: 1307-1315. 10.1016/j.yjmcc.2009.12.016.
Article
CAS
Google Scholar
Calvieri C, Rubattu S, Volpe M: Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med (Berl). 2012, 90: 5-13. 10.1007/s00109-011-0801-z.
Article
CAS
Google Scholar
Tønnessen T, Christensen G, Oie E, Holt E, Kjekshus H, Smiseth OA, Sejersted OM, Attramadal H: Increased cardiac expression of endothelin-1 mRNA in ischemic heart failure in rats. Cardiovasc Res. 1997, 33: 601-610. 10.1016/S0008-6363(96)00266-0.
Article
PubMed
Google Scholar
Tran KL, Lu X, Lei M, Feng Q, Wu Q: Upregulation of corin gene expression in hypertrophic cardiomyocytes and failing myocardium. Am J Physiol Heart Circ Physiol. 2004, 287: H1625-H631. 10.1152/ajpheart.00298.2004.
Article
CAS
PubMed
Google Scholar
Langenickel TH, Pagel I, Buttgereit J, Tenner K, Lindner M, Dietz R, Willenbrock R, Bader M: Rat corin gene: molecular cloning and reduced expression in experimental heart failure. Am J Physiol Heart Circ Physiol. 2004, 287: H1516-H1521. 10.1152/ajpheart.00947.2003.
Article
CAS
PubMed
Google Scholar
Dong N, Chen S, Wang W, Zhou Y, Wu Q: Corin in clinical laboratory diagnostics. Clin Chim Acta. 2012, 413: 378-383. 10.1016/j.cca.2011.10.032.
Article
CAS
PubMed
Google Scholar
Ibebuogu UN, Gladysheva IP, Houng AK, Reed GL: Decompensated heart failure is associated with reduced corin levels and decreased cleavage of pro-atrial natriuretic peptide. Circ Heart Fail. 2011, 4: 114-120. 10.1161/CIRCHEARTFAILURE.109.895581.
Article
CAS
PubMed
Google Scholar
Schipper ME, Scheenstra MR, van Kuik J, van Wichen DF, van der Weide P, Dullens HF, Lahpor J, de Jonge N, De Weger RA: Osteopontin: a potential biomarker for heart failure and reverse remodeling after left ventricular assist device support. J Heart Lung Transplant. 2011, 30: 805-810. 10.1016/j.healun.2011.03.015.
Article
PubMed
Google Scholar
Fomovsky GM, Thomopoulos S, Holmes JW: Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol. 2010, 48: 490-496. 10.1016/j.yjmcc.2009.08.003.
Article
CAS
PubMed
Google Scholar
Polyakova V, Loeffler I, Hein S, Miyagawa S, Piotrowska I, Dammer S, Risteli J, Schaper J, Kostin S: Fibrosis in endstage human heart failure: severe changes in collagen metabolism and MMP/TIMP profiles. Int J Cardiol. 2011, 151: 18-33. 10.1016/j.ijcard.2010.04.053.
Article
PubMed
Google Scholar
Graham HK, Horn M, Trafford AW: Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol (Oxf). 2008, 194: 3-21. 10.1111/j.1748-1716.2008.01881.x.
Article
CAS
Google Scholar
Spinale FG, Janicki JS, Zile MR: Membrane-associated matrix proteolysis and heart failure. Circ Res. 2013, 112: 195-208. 10.1161/CIRCRESAHA.112.266882.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rysä J, Leskinen H, Ilves M, Ruskoaho H: Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. Hypertension. 2005, 45: 927-933. 10.1161/01.HYP.0000161873.27088.4c.
Article
PubMed
Google Scholar
Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC: Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail. 2002, 8: S332-S338. 10.1054/jcaf.2002.129259.
Article
CAS
PubMed
Google Scholar
Hansson J, Vasan RS, Ärnlöv J, Ingelsson E, Lind L, Larsson A, Michaëlsson K, Sundström J: Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specific mortality: cohort study. PLoS ONE. 2011, 6: e16185-10.1371/journal.pone.0016185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devaux Y, Bousquenaud M, Rodius S, Marie PY, Maskali F, Zhang L, Azuaje F, Wagner DR: Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction. BMC Med Genomics. 2011, 4: 83-10.1186/1755-8794-4-83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT: Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol. 2006, 2: 486-493. 10.1038/nchembio813.
Article
CAS
PubMed
Google Scholar
Lv M, Ye HG, Zhao XS, Zhao XY, Chang YJ, Liu DH, Xu LP, Huang XJ: Ceruloplasmin is a potential biomarker for aGvHD following allogeneic hematopoietic stem cell transplantation. PLoS One. 2013, 8: e58735-10.1371/journal.pone.0058735.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Li Y, Liu J, Zheng M, Feng Y, Hu K, Huang Y, Huang Q: Screening and identification of biomarkers in ascites related to intrinsic chemoresistance of serous epithelial ovarian cancers. PLoS One. 2012, 7: e51256-10.1371/journal.pone.0051256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giurgea N, Constantinescu MI, Stanciu R, Suciu S, Muresan A: Ceruloplasmin - acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit. 2005, 11: RA48-RA51.
CAS
PubMed
Google Scholar
Wu Y, Hartiala J, Fan Y, Stewart AF, Roberts R, McPherson R, Fox PL, Allayee H, Hazen SL: Clinical and genetic association of serum ceruloplasmin with cardiovascular risk. Arterioscler Thromb Vasc Biol. 2012, 32: 516-522. 10.1161/ATVBAHA.111.237040.
Article
PubMed
Google Scholar
Xu Y, Lin H, Zhou Y, Cheng G, Xu G: Ceruloplasmin and the extent of heart failure in ischemic and nonischemic cardiomyopathy patients. Mediators Inflamm. 2013, 2013: 348145.
PubMed
PubMed Central
Google Scholar
Dadu RT, Dodge R, Nambi V, Virani SS, Hoogeveen RC, Smith NL, Chen F, Pankow JS, Guild C, Tang WH, Boerwinkle E, Hazen SL, Ballantyne CM: Ceruloplasmin and heart failure in the atherosclerosis risk in communities study. Circ Heart Fail. 2013, 6 (5): 936-943. 10.1161/CIRCHEARTFAILURE.113.000270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang F, Kotha J, Jennings LK, Zhang XA: Tetraspanins and vascular functions. Cardiovasc Res. 2009, 83: 7-15. 10.1093/cvr/cvp080.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lafleur MA, Xu D, Hemler ME: Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell. 2009, 20 (7): 2030-2040. 10.1091/mbc.E08-11-1149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu D, Sharma C, Hemler ME: Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J. 2009, 23 (11): 3674-3681. 10.1096/fj.09-133462.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan HW, Smith NJ, Hannan RD, Thomas WG: Tackling the EGFR in pathological tissue remodelling. Pulm Pharmacol Ther. 2006, 19 (1): 74-78. 10.1016/j.pupt.2005.04.005.
Article
CAS
PubMed
Google Scholar
Jiang J, Wu S, Wang W, Chen S, Peng J, Zhang X, Wu Q: Ectodomain shedding and -autocleavage of the cardiac membrane protease corin. J Biol Chem. 2011, 286 (12): 10066-10072. 10.1074/jbc.M110.185082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mancia G: Neurohumoral activation in congestive heart failure. Am Heart J. 1990, 120 (6 Pt 2): 1532-1537.
Article
CAS
PubMed
Google Scholar
Troidl C, Möllmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsässer A: Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med. 2009, 13 (9B): 3485-3496. 10.1111/j.1582-4934.2009.00707.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yáñez-Mó M, Gutiérrez-López MD, Cabañas C: Functional interplay between tetraspanins and proteases. Cell Mol Life Sci. 2011, 68 (20): 3323-3335. 10.1007/s00018-011-0746-y.
Article
PubMed
Google Scholar