Marsh JL, Thompson LM: Drosophila in the study of neurodegenerative disease. Neuron. 2006, 52: 169-178. 10.1016/j.neuron.2006.09.025.
Article
CAS
PubMed
Google Scholar
Mallik M, Lakhotia SC: Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J Genet. 2010, 89: 497-526. 10.1007/s12041-010-0072-4.
Article
CAS
PubMed
Google Scholar
Lu B, Vogel H: Drosophila models of neurodegenerative diseases. Annu Rev Pathol. 2009, 4: 315-342. 10.1146/annurev.pathol.3.121806.151529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nollen EAA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, Plasterk RHA: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci USA. 2004, 101: 6403-6408. 10.1073/pnas.0307697101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bilen J, Bonini NM: Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet. 2007, 3: e177-10.1371/journal.pgen.0030177.
Article
PubMed Central
Google Scholar
FlyBase. http://flybase.org/.
WormBase. http://www.wormbase.org/.
SGD. http://www.yeastgenome.org/.
Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008, 9 (Suppl 1): S4-10.1186/gb-2008-9-s1-s4.
Article
PubMed
PubMed Central
Google Scholar
Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007, 3: 140.
Article
PubMed
PubMed Central
Google Scholar
STRING. http://string-db.org.
GeneOntology. http://www.geneontology.org/.
NCBI HomoloGene. http://www.ncbi.nlm.nih.gov/homologene/.
Ostlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O, Sonnhammer ELL: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 2010, 38: D196-D203. 10.1093/nar/gkp931. Database issue
Article
PubMed
Google Scholar
InParanoid. http://inparanoid.sbc.su.se/cgi-bin/index.cgi.
EMBL (Human). ftp://ftp.ensembl.org/pub/release-68/embl/homo_sapiens/.
HGNC. http://www.genenames.org/.
EMBL (Mouse). ftp://ftp.ensembl.org/pub/release-68/embl/mus_musculus/.
MGI. http://www.informatics.jax.org/.
CytoscapeWeb. http://cytoscapeweb.cytoscape.org/.
Shulman JM, Feany MB: Genetic modifiers of tauopathy in Drosophila. Genetics. 2003, 165: 1233-1242.
CAS
PubMed
PubMed Central
Google Scholar
Warrick JM, Chan HYE, Gray-Board GL, Chai Y, Paulson HL, Bonini NM: Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet. 1999, 23: 425-428. 10.1038/70532.
Article
CAS
PubMed
Google Scholar
Harris GM, Dodelzon K, Gong L, Gonzalez-Alegre P, Paulson HL: Splice isoforms of the polyglutamine disease protein Ataxin-3 exhibit similar enzymatic yet different aggregation properties. PLoS One. 2010, 5: e13695-10.1371/journal.pone.0013695.
Article
PubMed
PubMed Central
Google Scholar
O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R: Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron. 2008, 60: 988-1009. 10.1016/j.neuron.2008.10.047.
Article
PubMed
PubMed Central
Google Scholar
Elden AC, Kim H-J, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, Armakola M, Geser F, Greene R, Lu MM, Padmanabhan A, Clay-Falcone D, McCluskey L, Elman L, Juhr D, Gruber PJ, Rüb U, Auburger G, Trojanowski JQ, Lee VM-Y, Deerlin VMV, Bonini NM, Gitler AD: Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010, 466: 1069-1075. 10.1038/nature09320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishimura I, Yang Y, Lu B: PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell. 2004, 116: 671-682. 10.1016/S0092-8674(04)00170-9.
Article
CAS
PubMed
Google Scholar
Folwell J, Cowan CM, Ubhi KK, Shiabh H, Newman TA, Shepherd D, Mudher A: Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer’s disease. Exp Neurol. 2010, 223: 401-409. 10.1016/j.expneurol.2009.09.014.
Article
CAS
PubMed
Google Scholar
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE: Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009, 78: 959-991. 10.1146/annurev.biochem.052308.114844.
Article
CAS
PubMed
Google Scholar
Hartl FU, Bracher A, Hayer-Hartl M: Molecular chaperones in protein folding and proteostasis. Nature. 2011, 475: 324-332. 10.1038/nature10317.
Article
CAS
PubMed
Google Scholar
Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D, Lecourtois M: Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet. 2007, 16: 555-566. 10.1093/hmg/ddm011.
Article
CAS
PubMed
Google Scholar
Chan HYE, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM: Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet. 2000, 9: 2811-2820. 10.1093/hmg/9.19.2811.
Article
CAS
PubMed
Google Scholar
Branco J, Al-Ramahi I, Ukani L, Pérez AM, Fernandez-Funez P, Rincón-Limas D, Botas J: Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum Mol Genet. 2008, 17: 376-390.
Article
CAS
PubMed
Google Scholar
Kazemi-Esfarjani P, Benzer S: Genetic suppression of polyglutamine toxicity in Drosophila. Science. 2000, 287: 1837-1840. 10.1126/science.287.5459.1837.
Article
CAS
PubMed
Google Scholar
Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She W-C, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ, McCall A, Canal I, Orr HT, Zoghbi HY, Botas J: Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000, 408: 101-106. 10.1038/35040584.
Article
CAS
PubMed
Google Scholar
Petrakis S, Raskó T, Russ J, Friedrich RP, Stroedicke M, Riechers S-P, Muehlenberg K, Möller A, Reinhardt A, Vinayagam A, Schaefer MH, Boutros M, Tricoire H, Andrade-Navarro MA, Wanker EE: Identification of human proteins that modify misfolding and proteotoxicity of pathogenic Ataxin-1. PLoS Genet. 2012, 8: e1002897-10.1371/journal.pgen.1002897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY: Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet. 1998, 19: 148-154. 10.1038/502.
Article
CAS
PubMed
Google Scholar
Chai Y, Koppenhafer SL, Bonini NM, Paulson HL: Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci. 1999, 19: 10338-10347.
CAS
PubMed
Google Scholar
Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G: Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem. 2000, 275: 8772-8778. 10.1074/jbc.275.12.8772.
Article
CAS
PubMed
Google Scholar
Jana NR, Tanaka M, Wang G, Nukina N: Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet. 2000, 9: 2009-2018. 10.1093/hmg/9.13.2009.
Article
CAS
PubMed
Google Scholar
Long P, Samnakay P, Jenner P, Rose S: A yeast two-hybrid screen reveals that osteopontin associates with MAP1A and MAP1B in addition to other proteins linked to microtubule stability, apoptosis and protein degradation in the human brain. Eur J Neurosci. 2012, 36: 2733-2742. 10.1111/j.1460-9568.2012.08189.x.
Article
PubMed
Google Scholar
Ghosh S, Feany MB: Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum Mol Genet. 2004, 13: 2011-2018. 10.1093/hmg/ddh214.
Article
CAS
PubMed
Google Scholar
Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, Muriel M-P, Morel L, Ruberg M, Brice A, Stevanin G, Tricoire H: A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci. 2007, 27: 2483-2492. 10.1523/JNEUROSCI.5453-06.2007.
Article
CAS
PubMed
Google Scholar
Pugazhenthi S, Wang M, Pham S, Sze C-I, Eckman CB: Downregulation of CREB expression in Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol Neurodegener. 2011, 6: 60-10.1186/1750-1326-6-60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG, Ferrario M, Borsani G, Spano P, Pizzi M: NF-κB pathway: a target for preventing β-amyloid (Aβ)-induced neuronal damage and Aβ42 production. Eur J Neurosci. 2006, 23: 1711-1720. 10.1111/j.1460-9568.2006.04722.x.
Article
PubMed
Google Scholar
Knight JC, Scharf EL, Mao-Draayer Y: Fas activation increases neural progenitor cell survival. J Neurosci Res. 2010, 88: 746-757.
CAS
PubMed
PubMed Central
Google Scholar
Al-Ramahi I, Pérez AM, Lim J, Zhang M, Sorensen R, de Haro M, Branco J, Pulst SM, Zoghbi HY, Botas J: dAtaxin-2 mediates expanded ataxin-1-induced neurodegeneration in a Drosophila model of SCA1. PLoS Genet. 2007, 3: e234-10.1371/journal.pgen.0030234.
Article
PubMed
PubMed Central
Google Scholar
Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strøbæk D, Liang X, Egorova P, Vorontsova D, Christophersen P, Rønn LCB, Bezprozvanny I: Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of Spinocerebellar Ataxia Type 2. Chem Biol. 2012, 19: 1340-1353. 10.1016/j.chembiol.2012.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Damrath E, Heck MV, Gispert S, Azizov M, Nowock J, Seifried C, Rüb U, Walter M, Auburger G: ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet. 2012, 8: e1002920-10.1371/journal.pgen.1002920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Damme P, Veldink JH, van Blitterswijk M, Corveleyn A, van Vught PWJ, Thijs V, Dubois B, Matthijs G, van den Berg LH, Robberecht W: Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology. 2011, 76: 2066-2072. 10.1212/WNL.0b013e31821f445b.
Article
CAS
PubMed
Google Scholar
Nielsen TT, Svenstrup K, Budtz-Jørgensen E, Eiberg H, Hasholt L, Nielsen JE: ATXN2 with intermediate-length CAG/CAA repeats does not seem to be a risk factor in hereditary spastic paraplegia. J Neurol Sci. 2012, 321: 100-102. 10.1016/j.jns.2012.07.036.
Article
CAS
PubMed
Google Scholar
Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, Carvalho de M, Meyer T, Tysnes O-B O-B, Auburger G, Gispert S, Bonini NM, Andersen PM, Gitler AD: Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet. 2011, 20: 1697-1700. 10.1093/hmg/ddr045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross OA, Rutherford NJ, Baker M, Soto-Ortolaza AI, Carrasquillo MM, DeJesus-Hernandez M, Adamson J, Li M, Volkening K, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Woodruff BK, Knopman DS, White CL, Gerpen JAV, Meschia JF, Mackenzie IR, Boylan K, Boeve BF, Miller BL, Strong MJ, Uitti RJ, Younkin SG, Graff-Radford NR, Petersen RC, et al: Ataxin-2 repeat-length variation and neurodegeneration. Hum Mol Genet. 2011, 20: 3207-3212. 10.1093/hmg/ddr227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang S, Ling JJ, Yang S, Li X-J, Li S: Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain. 2011, 134 (Pt 7): 1943-1958.
Article
PubMed
PubMed Central
Google Scholar
Zhang S, Binari R, Zhou R, Perrimon N: A genomewide RNA interference screen for modifiers of aggregates formation by mutant huntingtin in Drosophila. Genetics. 2010, 184: 1165-1179. 10.1534/genetics.109.112516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voßfeldt H, Butzlaff M, Prüßing K, Ní Chárthaigh R-A, Karsten P, Lankes A, Hamm S, Simons M, Adryan B, Schulz JB, Voigt A: Large-scale screen for modifiers of Ataxin-3-derived polyglutamine-induced toxicity in Drosophila. PLoS One. 2012, 7: e47452-10.1371/journal.pone.0047452.
Article
PubMed
PubMed Central
Google Scholar
Ishihara K, Yamagishi N, Saito Y, Adachi H, Kobayashi Y, Sobue G, Ohtsuka K, Hatayama T: Hsp105α suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J Biol Chem. 2003, 278: 25143-25150. 10.1074/jbc.M302975200.
Article
CAS
PubMed
Google Scholar
Eroglu B, Moskophidis D, Mivechi NF: Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid beta. Mol Cell Biol. 2010, 30: 4626-4643. 10.1128/MCB.01493-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL: Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet. 2008, 17: 3767-3775. 10.1093/hmg/ddn273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinti L, Chopra V, Rotili D, Valente S, Amore A, Franci G, Meade S, Valenza M, Altucci L, Maxwell MM, Cattaneo E, Hersch S, Mai A, Kazantsev A: Evaluation of histone deacetylases as drug targets in Huntington’s disease models. PLoS Curr. 2010, Sep 2. doi: 10.1371/currents.RRN1172.
Google Scholar
Thomas EA, Coppola G, Desplats PA, Tang B, Soragni E, Burnett R, Gao F, Fitzgerald KM, Borok JF, Herman D, Geschwind DH, Gottesfeld JM: The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA. 2008, 105: 15564-15569. 10.1073/pnas.0804249105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PAS, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP: Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA. 2003, 100: 2041-2046. 10.1073/pnas.0437870100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003, 23: 9418-9427.
CAS
PubMed
Google Scholar
Chou CJ, Herman D, Gottesfeld JM: Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J Biol Chem. 2008, 283: 35402-35409. 10.1074/jbc.M807045200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, Dangond F, Cormier KA, Cudkowicz ME, H. Brown R, Ferrante RJ: Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005, 93: 1087-1098. 10.1111/j.1471-4159.2005.03077.x.
Article
CAS
PubMed
Google Scholar
Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G: Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2009, 35: 870-880.
Article
PubMed
PubMed Central
Google Scholar
Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha G-H, Ukani L, Chepanoske CL, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby LM, Peltier JM, Botas J, Hughes RE: Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 2007, 3: e82-10.1371/journal.pgen.0030082.
Article
PubMed
PubMed Central
Google Scholar
Chen H-K, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, Aitken A, Skoulakis EMC, Orr HT, Botas J, Zoghbi HY: Interaction of Akt-phosphorylated Ataxin-1 with 14-3-3 mediates neurodegeneration in Spinocerebellar ataxia type 1. Cell. 2003, 113: 457-468. 10.1016/S0092-8674(03)00349-0.
Article
CAS
PubMed
Google Scholar
Kaneko K, Hachiya NS: The alternative role of 14-3-3 zeta as a sweeper of misfolded proteins in disease conditions. Med Hypotheses. 2006, 67: 169-171. 10.1016/j.mehy.2006.01.019.
Article
CAS
PubMed
Google Scholar
Okamoto Y, Shirakashi Y, Ihara M, Urushitani M, Oono M, Kawamoto Y, Yamashita H, Shimohama S, Kato S, Hirano A, Tomimoto H, Ito H, Takahashi R: Colocalization of 14-3-3 proteins with SOD1 in Lewy body-like hyaline inclusions in familial amyotrophic lateral sclerosis cases and the animal model. PLoS One. 2011, 6: e20427-10.1371/journal.pone.0020427.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashiguchi M, Sobue K, Paudel HK: 14-3-3ζ is an effector of tau protein phosphorylation. J Biol Chem. 2000, 275: 25247-25254. 10.1074/jbc.M003738200.
Article
CAS
PubMed
Google Scholar
Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, Wanker EE: Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell. 2001, 12: 1393-1407. 10.1091/mbc.12.5.1393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Bai X, Chen Y, Zhao Y, Liu X: Homocysteine induces apoptosis of rat hippocampal neurons by inhibiting 14-3-3ϵ expression and activating calcineurin. PLoS One. 2012, 7: e48247-10.1371/journal.pone.0048247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Omi K, Hachiya NS, Tanaka M, Tokunaga K, Kaneko K: 14-3-3zeta is indispensable for aggregate formation of polyglutamine-expanded huntingtin protein. Neurosci Lett. 2008, 431: 45-50. 10.1016/j.neulet.2007.11.018.
Article
CAS
PubMed
Google Scholar
Doumanis J, Wada K, Kino Y, Moore AW, Nukina N: RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation. PLoS One. 2009, 4: e7275-10.1371/journal.pone.0007275.
Article
PubMed
PubMed Central
Google Scholar
Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T: Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem. 2008, 283: 26188-26197. 10.1074/jbc.M710521200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A: Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell. 2011, 22: 3571-3583. 10.1091/mbc.E11-04-0330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batulan Z, Shinder GA, Minotti S, He BP, Doroudchi MM, Nalbantoglu J, Strong MJ, Durham HD: High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci. 2003, 23: 5789-5798.
CAS
PubMed
Google Scholar
Homma S, Jin X, Wang G, Tu N, Min J, Yanasak N, Mivechi NF: Demyelination, astrogliosis, and accumulation of ubiquitinated proteins, hallmarks of CNS disease in hsf1-deficient mice. J Neurosci. 2007, 27: 7974-7986. 10.1523/JNEUROSCI.0006-07.2007.
Article
CAS
PubMed
Google Scholar
Mookerjee S, Papanikolaou T, Guyenet SJ, Sampath V, Lin A, Vitelli C, DeGiacomo F, Sopher BL, Chen SF, Spada ARL, Ellerby LM: Posttranslational modification of Ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-Terminal caspase-7 cleavage fragment. J Neurosci. 2009, 29: 15134-15144. 10.1523/JNEUROSCI.4720-09.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmüller A, Picaud S, Zoghbi HY, Trottier Y, Tora L, Devys D: Glutamine-expanded Ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol. 2006, 4: e67-10.1371/journal.pbio.0040067.
Article
PubMed
PubMed Central
Google Scholar
Kanuka H, Kuranaga E, Hiratou T, Igaki T, Nelson B, Okano H, Miura M: Cytosol-endoplasmic reticulum interplay by Sec61α translocon in polyglutamine-mediated neurotoxicity in Drosophila. Proc Natl Acad Sci. 2003, 100: 11723-11728. 10.1073/pnas.1934748100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meusser B, Hirsch C, Jarosch E, Sommer T: ERAD: the long road to destruction. Nat Cell Biol. 2005, 7: 766-772. 10.1038/ncb0805-766.
Article
CAS
PubMed
Google Scholar
Wang Q, Li L, Ye Y: Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol. 2006, 174: 963-971. 10.1083/jcb.200605100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savas JN, Toyama BH, Xu T, Yates JR, Hetzer MW: Extremely long-lived nuclear pore proteins in the rat brain. Science. 2012, 335: 942-942. 10.1126/science.1217421.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Angelo MA, Raices M, Panowski SH, Hetzer MW: Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell. 2009, 136: 284-295. 10.1016/j.cell.2008.11.037.
Article
PubMed
PubMed Central
Google Scholar
Toyama BH, Hetzer MW: Protein homeostasis: live long, won’t prosper. Nat Rev Mol Cell Biol. 2013, 14: 55-61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janer A, Werner A, Takahashi-Fujigasaki J, Daret A, Fujigasaki H, Takada K, Duyckaerts C, Brice A, Dejean A, Sittler A: SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Hum Mol Genet. 2010, 19: 181-195. 10.1093/hmg/ddp478.
Article
CAS
PubMed
Google Scholar
Poukka H, Karvonen U, Jänne OA, Palvimo JJ: Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA. 2000, 97: 14145-14150. 10.1073/pnas.97.26.14145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riley BE, Zoghbi HY, Orr HT: SUMOylation of the polyglutamine repeat protein, Ataxin-1, is dependent on a functional nuclear localization signal. J Biol Chem. 2005, 280: 21942-21948. 10.1074/jbc.M501677200.
Article
CAS
PubMed
Google Scholar
Tsai YC, Fishman PS, Thakor NV, Oyler GA: Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem. 2003, 278: 22044-22055. 10.1074/jbc.M212235200.
Article
CAS
PubMed
Google Scholar
Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY: Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron. 1999, 24: 879-892. 10.1016/S0896-6273(00)81035-1.
Article
CAS
PubMed
Google Scholar
She H, Yang Q, Mao Z: Neurotoxin-induced selective ubiquitination and regulation of MEF2A isoform in neuronal stress response. J Neurochem. 2012, 122: 1203-1210. 10.1111/j.1471-4159.2012.07860.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu Y, Mickiewicz AL, Kordower j: α-synuclein aggregation reduces nigral myocyte enhancer Factor-2D in idiopathic and experimental Parkinson’s disease. Neurobiol Dis. 2011, 41: 71-82. 10.1016/j.nbd.2010.08.022.
Article
CAS
PubMed
Google Scholar
She H, Mao Z: Regulation of myocyte enhancer factor-2 transcription factors by neurotoxins. Neurotoxicology. 2011, 32: 563-566. 10.1016/j.neuro.2011.05.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton TR, Dibrov A, Kashour T, Amara FM: Anti-apoptotic wild-type Alzheimer amyloid precursor protein signaling involves the p38 mitogen-activated protein kinase/MEF2 pathway. Brain Res Mol Brain Res. 2002, 108: 102-120. 10.1016/S0169-328X(02)00519-3.
Article
CAS
PubMed
Google Scholar
González P, Álvarez V, Menéndez M, Lahoz CH, Martínez C, Corao AI, Calatayud MT, Peña J, García-Castro M, Coto E: Myocyte enhancing factor-2A in Alzheimer’s disease: genetic analysis and association with MEF2A-polymorphisms. Neurosci Lett. 2007, 411: 47-51. 10.1016/j.neulet.2006.09.055.
Article
PubMed
Google Scholar
Salma J, McDermott JC: Suppression of a MEF2-KLF6 survival pathway by PKA signaling promotes apoptosis in embryonic hippocampal neurons. J Neurosci. 2012, 32: 2790-2803. 10.1523/JNEUROSCI.3609-11.2012.
Article
CAS
PubMed
Google Scholar
Burnett BG, Andrews J, Ranganathan S, Fischbeck KH, Di Prospero NA: Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics. Neurobiol Dis. 2008, 30: 365-374. 10.1016/j.nbd.2008.02.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M: Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics. 2004, 4: 3943-3952. 10.1002/pmic.200400848.
Article
CAS
PubMed
Google Scholar
Shim SM, Lee WJ, Kim Y, Chang JW, Song S, Jung Y-K: Role of S5b/PSMD5 in proteasome inhibition caused by TNF-α/NFκB in higher eukaryotes. Cell Rep. 2012, 2: 603-615. 10.1016/j.celrep.2012.07.013.
Article
CAS
PubMed
Google Scholar
Ciechanover A, Brundin P: The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003, 40: 427-446. 10.1016/S0896-6273(03)00606-8.
Article
CAS
PubMed
Google Scholar
Tyedmers J, Mogk A, Bukau B: Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010, 11: 777-788. 10.1038/nrm2993.
Article
CAS
PubMed
Google Scholar
Zuccato C, Cattaneo E: Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009, 5: 311-322. 10.1038/nrneurol.2009.54.
Article
CAS
PubMed
Google Scholar
Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB: TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol. 2006, 16: 230-241.
Article
CAS
PubMed
Google Scholar
Cao M, Tan X, Jin W, Zheng H, Xu W, Rui Y, Li L, Cao J, Wu X, Cui G, Ke K, Gao Y: Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation. Neurochem Int. 2013, 62: 406-417. 10.1016/j.neuint.2013.01.025.
Article
CAS
PubMed
Google Scholar
Cheng H-C, Kim SR, Oo TF, Kareva T, Yarygina O, Rzhetskaya M, Wang C, During M, Talloczy Z, Tanaka K, Komatsu M, Kobayashi K, Okano H, Kholodilov N, Burke RE: Akt suppresses retrograde degeneration of dopaminergic axons by inhibition of macroautophagy. J Neurosci. 2011, 31: 2125-2135. 10.1523/JNEUROSCI.5519-10.2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sang T-K, Li C, Liu W, Rodriguez A, Abrams JM, Zipursky SL, Jackson GR: Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis. Hum Mol Genet. 2005, 14: 357-372.
Article
CAS
PubMed
Google Scholar