Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA: Cancer J Clin. 2002; 52(1):23–47.
Google Scholar
Longo DL, Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015; 373(12):1136–52.
Article
Google Scholar
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012; 120(12):2454–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
List A, Bennett J, Sekeres M, Skikne B, Fu T, Shammo J, Nimer S, Knight R, Giagounidis A. Extended survival and reduced risk of aml progression in erythroid-responsive lenalidomide-treated patients with lower-risk del (5q) mds. Leukemia. 2014; 28(5):1033–40.
Article
CAS
PubMed
Google Scholar
Harada Y, Harada H. Molecular mechanisms that produce secondary mds/aml by runx1/aml1 point mutations. J Cell Biochem. 2011; 112(2):425–32.
Article
CAS
PubMed
Google Scholar
Shukron O, Vainstein V, Kündgen A, Germing U, Agur Z. Analyzing transformation of myelodysplastic syndrome to secondary acute myeloid leukemia using a large patient database. Am J Hematol. 2012; 87(9):853–60.
Article
PubMed
Google Scholar
Meggendorfer M, De Albuquerque A, Nadarajah N, Alpermann T, Kern W, Steuer K, Perglerová K, Haferlach C, Schnittger S, Haferlach T. Karyotype evolution and acquisition of flt3 or ras pathway alterations drive progression of myelodysplastic syndrome to acute myeloid leukemia. Haematologica. 2015; 100(12):487.
Article
Google Scholar
Yamazaki J, Estecio MR, Lu Y, Long H, Malouf GG, Graber D, Huo Y, Ramagli L, Liang S, Kornblau SM, et al. The epigenome of aml stem and progenitor cells. Epigenetics. 2013; 8(1):92–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer. 2012; 12(12):849–59.
Article
CAS
PubMed
Google Scholar
Wang C, Sashida G, Saraya A, Ishiga R, Koide S, Oshima M, Isono K, Koseki H, Iwama A. Depletion of sf3b1 impairs proliferative capacity of hematopoietic stem cells but is not sufficient to induce myelodysplasia. Blood. 2014; 123(21):3336–43.
Article
CAS
PubMed
Google Scholar
Wu SJ, Kuo YY, Hou HA, Li LY, Tseng MH, Huang CF, Lee FY, Liu MC, Liu CW, Lin CT, et al. The clinical implication of srsf2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood. 2012; 120(15):3106–11.
Article
CAS
PubMed
Google Scholar
Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the bcl-2–related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to mds. Blood. 2000; 96(12):3932–8.
CAS
PubMed
Google Scholar
Shimazaki K, Ohshima K, Suzumiya J, Kawasaki C, Kikuchi M. Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes. Br J Haematol. 2000; 110(3):584–90.
Article
CAS
PubMed
Google Scholar
Rhyasen G, Starczynowski D. Deregulation of micrornas in myelodysplastic syndrome. Leukemia. 2012; 26(1):13–22.
Article
CAS
PubMed
Google Scholar
Haferlach T, Kohlmann A, Wieczorek L, Basso G, Te Kronnie G, Béné M-C, De Vos J, Hernández JM, Hofmann WK, Mills KI, et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the international microarray innovations in leukemia study group. J Clin Oncol. 2010; 28(15):2529–37.
Article
CAS
PubMed
Google Scholar
Mills KI, Kohlmann A, Williams PM, Wieczorek L, Liu W-M, Li R, Wei W, Bowen DT, Loeffler H, Hernandez JM, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of aml transformation of myelodysplastic syndrome. Blood. 2009; 114(5):1063–72.
Article
CAS
PubMed
Google Scholar
Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle p value generates irreproducible results. Nat Methods. 2015; 12(3):179–85.
Article
CAS
PubMed
Google Scholar
Choi Y, Kendziorski C. Statistical methods for gene set coexpression analysis. Bioinformatics. 2009; 25(21):2780–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of rna-seq and microarray in transcriptome profiling of activated t cells.PloS One. 2014; 9(1):e78644.
Article
PubMed
PubMed Central
Google Scholar
Sinoquet C, Mourad R. Probabilistic Graphical Models for Genetics, Genomics and Postgenomics. Oxford, UK: Oxford University Press; 2014.
Book
Google Scholar
Bing H, Xue-wen C. bneat: a bayesian network method for detecting epistatic interactions in genome-wide association studies. BMC Genomics. 2011; 12(Suppl 2):9.
Article
Google Scholar
Liu ZP. Identifying network-based biomarkers of complex diseases from high-throughput data. Biomarkers Med. 2016; 10(6):633–50.
Article
CAS
Google Scholar
Langfelder P, Horvath S. Wgcna: an r package for weighted correlation network analysis. BMC Bioinforma. 2008; 9(1):559.
Article
Google Scholar
Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Nat Acad Sci. 2006; 103(47):17973–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics. 2001; 17(9):763–74.
Article
CAS
PubMed
Google Scholar
Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, D’Eustachio P, Stein L. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers. 2012; 4(4):1180–211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alharbi RA, Pettengell R, Pandha HS, Morgan R. The role of hox genes in normal hematopoiesis and acute leukemia. Leukemia. 2013; 27(5):1000–8.
Article
CAS
PubMed
Google Scholar
Garzon R, Volinia S, Papaioannou D, Nicolet D, Kohlschmidt J, Yan PS, Mrózek K, Bucci D, Carroll AJ, Baer MR, et al. Expression and prognostic impact of lncrnas in acute myeloid leukemia. Proc Nat Acad Sci. 2014; 111(52):18679–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jolliffe I. Principal Component Analysis. Hoboken, NJ: Wiley Online Library; 2002.
Google Scholar
Welch BL. The generalization of student’s problem when several different population variances are involved. Biometrika. 1947; 34(1/2):28–35.
Article
CAS
PubMed
Google Scholar
Scutari M. Learning bayesian networks with the bnlearn r package. J Stat Softw. 2010; 35(1):1–22. doi:10.18637/jss.v035.i03.
Google Scholar
Quinlan JR. C4.5: Programming for Machine Learning. Amsterdam, Netherlands: Elsevier; 1993.
Google Scholar
Bejar R. Prognostic models in myelodysplastic syndromes. ASH Educ Program Book. 2013; 2013(1):504–10.
Google Scholar
Bruserud Ø, Gjertsen BT, Huang T-S. Induction of differentiation and apoptosis—a possible strategy in the treatment of adult acute myelogenous leukemia. The Oncologist. 2000; 5(6):454–62.
Article
CAS
PubMed
Google Scholar
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012; 196(4):395–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011; 209(2):139–51.
Article
CAS
PubMed
Google Scholar
Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ. Ecm molecules mediate both schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng. 2007; 13(12):2863–70.
Article
CAS
PubMed
Google Scholar
Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol. 1989; 109(1):317–30.
Article
CAS
PubMed
Google Scholar
Ilić D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol. 1998; 143(2):547–60.
Article
PubMed
PubMed Central
Google Scholar
Mahlknecht U, Schönbein C. Histone deacetylase inhibitor treatment downregulates vla-4 adhesion in hematopoietic stem cells and acute myeloid leukemia blast cells. Haematologica. 2008; 93(3):443–6.
Article
CAS
PubMed
Google Scholar
Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. Panther version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016; 44(D1):336–42.
Article
Google Scholar
Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011; 3(12):005058.
Article
Google Scholar
Suzuki MM, Bird A. Dna methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008; 9(6):465–76.
Article
CAS
PubMed
Google Scholar
Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, et al. Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nat Methods. 2015; 12(3):211–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohlmann A, Bullinger L, Thiede C, Schaich M, Schnittger S, Döhner K, Dugas M, Klein H, Döhner H, Ehninger G, et al. Gene expression profiling in aml with normal karyotype can predict mutations for molecular markers and allows novel insights into perturbed biological pathways. Leukemia. 2010; 24(6):1216–20.
Article
CAS
PubMed
Google Scholar
Haferlach C, Mecucci C, Schnittger S, Kohlmann A, Mancini M, Cuneo A, Testoni N, Rege-Cambrin G, Santucci A, Vignetti M, et al. Aml with mutated npm1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood. 2009; 114(14):3024–32.
Article
CAS
PubMed
Google Scholar
Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC, Heinecke A, Radmacher M, Marcucci G, Whitman SP, et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008; 112(10):4193–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miesner M, Haferlach C, Bacher U, Weiss T, Macijewski K, Kohlmann A, Klein HU, Dugas M, Kern W, Schnittger S, et al. Multilineage dysplasia (mld) in acute myeloid leukemia (aml) correlates with mds-related cytogenetic abnormalities and a prior history of mds or mds/mpn but has no independent prognostic relevance. Blood. 2010; 116(15):2742–51.
Article
CAS
PubMed
Google Scholar
Grossmann V, Bacher U, Kohlmann A, Artusi V, Klein HU, Dugas M, Schnittger S, Alpermann T, Kern W, Haferlach T, et al. Ezh2 mutations and their association with picalm-mllt10 positive acute leukaemia. Br J Haematol. 2012; 157(3):387–90.
Article
PubMed
Google Scholar
Marchionni L. Impact of Gene Expression Profiling Tests on Breast Cancer Outcomes. Collingdale, PA: DIANE Publishing; 2009.
Google Scholar
Tuma RS. A big trial for a new technology: Transbig project takes microarrays into clinical trials. J Nat Cancer Inst. 2004; 96(9):648–9.
Article
PubMed
Google Scholar
Li J, Lenferink AE, Deng Y, Collins C, Cui Q, Purisima EO, O’Connor-McCourt MD, Wang E. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun. 2010; 1:34.
PubMed
Google Scholar
Zhao X, Rodland EA, Tibshirani R, Plevritis S. Molecular subtyping for clinically defined breast cancer subgroups. Breast Cancer Res. 2015; 17(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Citri A, Yarden Y. Egf–erbb signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006; 7(7):505–16.
Article
CAS
PubMed
Google Scholar
Raiser DM, Narla A, Ebert BL. The emerging importance of ribosomal dysfunction in the pathogenesis of hematologic disorders. Leuk lymphoma. 2014; 55(3):491–500.
Article
CAS
PubMed
Google Scholar
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol. 2015; 7(2):92–104.
Article
PubMed
PubMed Central
Google Scholar
Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006; 6(5):369–81.
Article
CAS
PubMed
Google Scholar
Boudreau N, Bissell MJ. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol. 1998; 10(5):640–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kessel M, Gruss P, et al. Murine developmental control genes. Science. 1990; 249(4967):374–9.
Article
CAS
PubMed
Google Scholar
Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence?. Nat Rev Cancer. 2002; 2(10):777–85.
Article
CAS
PubMed
Google Scholar
Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W, Boudreau N. A role for hox a5 in regulating angiogenesis and vascular patterning. Lymphatic Res Biol. 2005; 3(4):240–52.
Article
CAS
Google Scholar
Mace KA, Hansen SL, Myers C, Young DM, Boudreau N. Hoxa3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J Cell Sci. 2005; 118(12):2567–77.
Article
CAS
PubMed
Google Scholar
Afonja O, Smith Jr JE, Cheng DM, Goldenberg AS, Amorosi E, Shimamoto T, Nakamura S, Ohyashiki K, Ohyashiki J, Toyama K, et al. Meis1 and hoxa7 genes in human acute myeloid leukemia. Leuk Res. 2000; 24(10):849–55.
Article
CAS
PubMed
Google Scholar
Leroy P, Berto F, Bourget I, Rossi B. Down-regulation of hox a7 is required for cell adhesion and migration on fibronectin during early hl-60 monocytic differentiation. J Leukoc Biol. 2004; 75(4):680–8.
Article
CAS
PubMed
Google Scholar
Bauvois B. New facets of matrix metalloproteinases mmp-2 and mmp-9 as cell surface transducers: outside-in signaling and relationship to tumor progression. Biochim Biophys Acta (BBA)-Rev Cancer. 2012; 1825(1):29–36.
Article
CAS
Google Scholar
Hatfield JK, Reikvam H, Bruserud O. The crosstalk between the matrix metalloprotease system and the chemokine network in acute myeloid leukemia. Curr Med Chem. 2010; 17(36):4448–61.
Article
CAS
PubMed
Google Scholar
Paupert J, Mansat-De Mas V, Demur C, Salles B, Muller C. Cell-surface mmp-9 regulates the invasive capacity of leukemia blast cells with monocytic features. Cell Cycle. 2008; 7(8):1047–53.
Article
CAS
PubMed
Google Scholar
Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z. Matrix metalloproteinase-2 and-9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One. 2011; 6(8):20599.
Article
Google Scholar
Bernal T, Moncada-Pazos Á, Soria-Valles C, Gutiérrez-Fernández A. Effects of azacitidine on matrix metalloproteinase-9 in acute myeloid leukemia and myelodysplasia. Exp Hematol. 2013; 41(2):172–9.
Article
CAS
PubMed
Google Scholar
Aref S, El-Sherbiny M, Mabed M, Menessy A, El-Refaei M. Urokinase plasminogen activator receptor and soluble matrix metalloproteinase-9 in acute myeloid leukemia patients: a possible relation to disease invasion. Hematology. 2003; 8(6):385–91.
Article
CAS
PubMed
Google Scholar
Travaglino E, Benatti C, Malcovati L, Porta MGD, Gallì A, Bonetti E, Rosti V, Cazzola M, Invernizzi R. Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur J Haematol. 2008; 80(3):216–26.
Article
PubMed
Google Scholar
Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D, Brown P, et al. Gene shaving as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol. 2000; 1(2):1–0003.
Article
Google Scholar
Ma S, Song X, Huang J. Supervised group lasso with applications to microarray data analysis. BMC Bioinforma. 2007; 8(1):60.
Article
Google Scholar
Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform quantification from rna-seq reads using lightweight algorithms. Nat Biotechnol. 2014; 32(5):462–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008; 5(7):621–8.
Article
CAS
PubMed
Google Scholar
Curtis C, Shah SP, CHin SF, Turashvili G, Rueda OM, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012; 486(7403):346–52.
CAS
PubMed
PubMed Central
Google Scholar
Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Nat Acad Sci USA. 2005; 102(38):13550–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, et al. Integrated systems approach identifies genetic nodes and networks in late-onset alzheimer’s disease. Cell. 2013; 153(3):707–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu Z, Zhang B, Zhu J. Network integration of genetically regulated gene expression to study complex diseases.Integrating Omics Data. 2015; 88:88–109.
Article
Google Scholar
Zare H, Haffari G, Gupta A, Brinkman RR. Scoring relevancy of features based on combinatorial analysis of lasso with application to lymphoma diagnosis. BMC Genomics. 2013; 14(Suppl 1):14.
Article
Google Scholar
Miller BG, Stamatoyannopoulos JA. Integrative meta-analysis of differential gene expression in acute myeloid leukemia.PLoS One. 2010; 5(3):e9466.
Article
PubMed
PubMed Central
Google Scholar
Dong J, Horvath S. Understanding network concepts in modules. BMC Syst Biol. 2007; 1(1):24.
Article
PubMed
PubMed Central
Google Scholar
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (msigdb) 3.0. Bioinformatics. 2011; 27(12):1739–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T. The rin: an rna integrity number for assigning integrity values to rna measurements. BMC Mol Biol. 2006; 7(1):3.
Article
PubMed
PubMed Central
Google Scholar
Ranola JM, Langfelder P, Lange K, Horvath S. Cluster and propensity based approximation of a network. BMC Syst Biol. 2013; 7(1):21.
Article
PubMed
PubMed Central
Google Scholar
Jensen FV, Vol. 210. An Introduction to Bayesian Networks. London: UCL press; 1996.
Google Scholar