Centers for Disease C, Prevention. Smoking-attributable mortality, years of potential life lost, and productivity losses--United States, 2000-2004. MMWR Morb Mortal Wkly Rep. 2008;57(45):1226–8. doi:10.1001/jama.301.6.593.
Article
Google Scholar
US Department of Health and Human Services. The Health Consequences of Smoking- 50 years of Progress: A report from the Surgeon General. Atlanta, GA. 2014.
Jamal A, Homa DM, O’Connor E, et al. Current cigarette smoking among adults - United States, 2005-2014. MMWR Morb Mortal Wkly Rep. 2015;64(44):1233–40. doi:10.15585/mmwr.mm6444a2.
Article
PubMed
Google Scholar
Samet JM. Health benefits of smoking cessation. Clin Chest Med. 1991;12(4):669–79.
CAS
PubMed
Google Scholar
United States Public Health Service Office of the Surgeon General, United States Public Health Service Office on Smoking and Health. The Health Benefits of Smoking Cessation: A Report of the Surgeon General. DHHS Publication No. (CDC) 90–8416. Rockville, MD. 1990.
Huan T, Joehanes R, Schurmann C, et al. A Whole-Blood Transcriptome Meta-Analysis Identifies Gene Expression Signatures of Cigarette Smoking. Hum Mol Genet. 2016;Epub ahead. doi:10.1093/hmg/ddw288.
Vink JM, Jansen R, Brooks A, et al. Differential gene expression patterns between smokers and non-smokers: Cause or consequence? Addict Biol. 2015. doi:10.1111/adb.12322.
Article
PubMed
PubMed Central
Google Scholar
Beineke P, Fitch K, Tao H, et al. A whole blood gene expression-based signature for smoking status. BMC Med Genet. 2012;5(1):58. doi:10.1186/1755-8794-5-58.
Article
CAS
Google Scholar
Paul S, Amundson SA. Differential effect of active smoking on gene expression in male and female smokers. J Carcinog Mutagen. 2014;5(973):1–22. do:10.4172/2157-2518.1000198.
Charlesworth JC, Curran JE, Johnson MP, et al. Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes. BMC Med Genet. 2010;3:29. doi:10.1186/1755-8794-3-29.
Article
CAS
Google Scholar
Zeller T, Wild P, Szymczak S, et al. Genetics and beyond - the transcriptome of human monocytes and disease susceptibility. PLoS One. 2010;5(5). doi:10.1371/journal.pone.0010693.
Article
PubMed
PubMed Central
Google Scholar
Spira A, Beane J, Shah V, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 2004;101(27):10143–8. doi:10.1073/pnas.0401422101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beane J, Sebastiani P, Liu G, Brody JS, Lenburg ME, Spira A. Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression. Genome Biol. 2007;8(9):R201. doi:10.1186/gb-2007-8-9-r201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heguy A, O’Connor TP, Luettich K, et al. Gene expression profiling of human alveolar macrophages of phenotypically normal smokers and nonsmokers reveals a previously unrecognized subset of genes modulated by cigarette smoking. J Mol Med. 2006;84(4):318–28. doi:10.1007/s00109-005-0008-2.
Article
CAS
PubMed
Google Scholar
Landi MT, Dracheva T, Rotunno M, et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 2008;3(2). doi:10.1371/journal.pone.0001651.
Article
PubMed
PubMed Central
Google Scholar
Staaf J, Jönsson G, Jönsson M, et al. Relation between smoking history and gene expression profiles in lung adenocarcinomas. BMC Med Genet. 2012;5:22. doi:10.1186/1755-8794-5-22.
Article
CAS
Google Scholar
Boelens MC, Van Den Berg A, Fehrmann RSN, et al. Current smoking-specific gene expression signature in normal bronchial epithelium is enhanced in squamous cell lung cancer. J Pathol. 2009;218(2):182–91. doi:10.1002/path.2520.
Article
CAS
PubMed
Google Scholar
Regan EA, Hokanson JE, Murphy JR, et al. Genetic epidemiology of COPD (COPDgene) study design. Epidemiology. 2011;7(1):1–10. doi:10.3109/15412550903499522.Genetic.
Article
Google Scholar
Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Am J Respir Crit Care Med. 2017:1–74. doi:10.1164/rccm.201701-0218PP.
Article
CAS
PubMed
Google Scholar
Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15(1):182. doi:10.1186/1471-2105-15-182.
Article
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi:10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10). doi:10.1093/nar/gkt214.
Article
PubMed
PubMed Central
Google Scholar
Kersey PJ, Allen JE, Armean I, et al. Ensembl genomes 2016: more genomes, more complexity. Nucleic Acids Res. 2016;44(D1):D574–80. doi:10.1093/nar/gkv1209.
Article
CAS
PubMed
Google Scholar
Andrews S. Fastqc: A Quality Control Tool For High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Published 2010. Accessed 1 May 2016.
Deluca DS, Levin JZ, Sivachenko A, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28(11):1530–2. doi:10.1093/bioinformatics/bts196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets - Update. Nucleic Acids Res. 2013;41(D1). doi:10.1093/nar/gks1193.
Article
PubMed
PubMed Central
Google Scholar
Leek JT. Svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 2014;42(21):e161. doi:10.1093/nar/gku864.
Article
CAS
PubMed Central
Google Scholar
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29. doi:10.1186/gb-2014-15-2-r29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Care V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and bioconductor. New York: Springer; 2005. doi:10.1007/0-387-29362-0_23.
Chapter
Google Scholar
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25 doi:10.1038/75556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43(Database issue):D1049–56. doi:10.1093/nar/gku1179.
Article
CAS
Google Scholar
Mi H, Huang X, Muruganujan A, et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2016:gkw1138. doi:10.1093/nar/gkw1138.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22(10):2008–17. doi:10.1101/gr.133744.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guida F, Sandanger TM, Castagné R, et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation, 2015. Hum Mol Genet. 24(8):2349–59. https://doi.org/10.1093/hmg/ddu751.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan ES, Qiu W, Baccarelli A, et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet. 2012;21(13):3073–82. doi:10.1093/hmg/dds135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan ES, Qiu W, Carey VJ, et al. Smoking-associated site-specific differential methylation in buccal mucosa in the COPDGene study. Am J Respir Cell Mol Biol. 2015;53(2):246–54. doi:10.1165/rcmb.2014-0103OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeilinger S, Kuhnel B, Klopp N, et al. Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA Methylation. PLoS One. 2013;8(5). doi:10.1371/journal.pone.0063812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsaprouni LG, Yang TP, Bell J, et al. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics. 2014;9(10):1382–96. doi:10.4161/15592294.2014.969637.
Article
PubMed
PubMed Central
Google Scholar
Ulitsky I, Bartel DP. LincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46. doi:10.1016/j.cell.2013.06.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ching T, Masaki J, Weirather J, et al. Non-coding yet non-trivial: a review on the computational genomics of lincRNAs. BioData Min. 2015;8(1):44. doi:10.1186/s13040-015-0075-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hon C, Ramilowski J, Harshbarger J, et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature. 2017. doi:10.1038/nature21374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loewen G, Zhuo Y, Zhuang Y, Jayawickramarajah J, Shan B. lincRNA HOTAIR as a novel promoter of cancer progression. J Can Res Updates. 2014;3(3):134–40. https://doi.org/10.6000/1929-2279.2014.03.03.3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72. https://doi.org/10.1073/pnas.0904715106.
Article
PubMed
PubMed Central
Google Scholar
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs : functional surprises from the RNA world. 2009:1494–1504. doi:https://doi.org/10.1101/gad.1800909.
Article
CAS
Google Scholar
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2012;43(6):904–14. https://doi.org/10.1016/j.molcel.2011.08.018.Molecular.
Article
CAS
Google Scholar
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. NIH Public Access. 2012;146(3):353–8. https://doi.org/10.1016/j.cell.2011.07.014.A.
Article
Google Scholar
Liu K, Yan Z, Li Y, Sun Z. Linc2GO: a human LincRNA function annotation resource based on ceRNA hypothesis. Bioinformatics. 2013;29(17):2221–2. doi:10.1093/bioinformatics/btt361.
Article
CAS
PubMed
Google Scholar
Shan K, Jiang Q, Wang X-Q, et al. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis. 2016;7:e2248. http://dx.doi.org/10.1038/cddis.2016.145
Article
CAS
PubMed
PubMed Central
Google Scholar
Li JH, Liu S, Zhou H, Qu LH, Yang JH. StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(D1):92–7. doi:10.1093/nar/gkt1248.
Article
CAS
Google Scholar
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4 doi:10.7554/eLife.05005.
Reyes A, Huber W. Transcript Isoform Differences Across Human Tissues Are Predominantly Driven By Alternative Start And Termination Sites Of Transcription. bioRxiv. 2017:1–23. doi:10.1101/127894.
Bieberstein NI, Oesterreich FC, Straube K, Neugebauer KM. First exon length controls active chromatin signatures and transcription. Cell Rep. 2012;2(1):62–8. doi:10.1016/j.celrep.2012.05.019.
Article
CAS
PubMed
Google Scholar
Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol. 2015;16(3):167–77. doi:10.1038/nrm3953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferris B. Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis. 1978;118(6 Pt 2):1–120.
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. doi:10.1186/1471-2105-12-323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7. doi:10.1038/nbt.3519.
Article
CAS
PubMed
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Meth. 2017;14(4):417–9. https://doi.org/10.1038/nmeth.4197
Article
CAS
Google Scholar
Teng M, Love MI, Davis CA, et al. A benchmark for RNA-seq quantification pipelines. Genome Biol. 2016;17(1):74. doi:10.1186/s13059-016-0940-1.
Article
CAS
PubMed
PubMed Central
Google Scholar