Aguilar D, Fernandez ML. Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity. Adv Nutr. 2014;5(5):497–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexandru N, Constantin A, Nemecz M, Comariţa IK, Vîlcu A, Procopciuc A, Georgescu A, et al. Hypertension associated with hyperlipidemia induced different microRNA expression profiles in plasma, platelets, and platelet-derived microvesicles; effects of endothelial progenitor cell therapy. Front Med. 2019;6:280.
Article
Google Scholar
Anitha P, Anbarasu A, Ramaiah S. Gene network analysis reveals the association of important functional partners involved in antibiotic resistance: a report on an important pathogenic bacterium Staphylococcus aureus. Gene. 2016;575(2):253–63.
Article
CAS
PubMed
Google Scholar
Anitha P, Bag S, Anbarasu A, Ramaiah S. Gene and protein network analysis of AmpC β lactamase. Cell Biochem Biophys. 2015;71(3):1553–67.
Article
CAS
PubMed
Google Scholar
Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;1(1):1–10.
Article
PubMed
PubMed Central
Google Scholar
Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2007;24(2):282–4.
Article
PubMed
CAS
Google Scholar
Aziz MH, Cui K, Das M, Brown KE, Ardell CL, Febbraio M, Ballantyne CM, et al. The upregulation of integrin αDβ2 (CD11d/CD18) on inflammatory macrophages promotes macrophage retention in vascular lesions and development of atherosclerosis. J Immunol. 2017;198(12):4855–67.
Article
CAS
PubMed
Google Scholar
Babaev VR, Fazio S, Gleaves LA, Carter KJ, Semenkovich CF, Linton MF. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J Clin Investig. 1999;103(12):1697–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4(1):2.
Article
PubMed
PubMed Central
Google Scholar
Baishya S, Banik SK, Talukdar AD, Anbarasu A, Bhattacharjee A, Choudhury MD. Full title: Identification of potential drug targets against carbapenem resistant Enterobacteriaceae (CRE) strains using in silico gene network analysis. Gene Reports. 2019;14:129–37.
Article
Google Scholar
Baishya S, Deshamukhya C, Wangkheimayum J, Das BJ, Anbarasu A, Talukdar AD, Choudhury MD, et al. Transcriptional expression of secondary resistance genes ccdB and repA2 is enhanced in presence of cephalosporin and carabapenem in Escherichia coli. 2020.
Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barquera S, Pedroza-Tobías A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R, Moran AE. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46(5):328–38.
Article
PubMed
Google Scholar
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-multi-functional leukocyte receptors in health and disease. Int J Mol Sci. 2020;21(4):1402.
Article
CAS
PubMed Central
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Galon J, et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biros E, Karan M, Golledge J. Genetic variation and atherosclerosis. Curr Genomics. 2008;9(1):29–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonneau E, Neveu B, Kostantin E, Tsongalis G, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. Ejifcc. 2019;30(2):114.
CAS
PubMed
PubMed Central
Google Scholar
Calway T, Kim GH. Harnessing the therapeutic potential of MicroRNAs for cardiovascular disease. J Cardiovasc Pharmacol Ther. 2015;20(2):131–43.
Article
CAS
PubMed
Google Scholar
Chen L, Zhang Y-H, Zhang Z, Huang T, Cai Y-D. Inferring novel tumor suppressor genes with a protein-protein interaction network and network diffusion algorithms. Mol Therapy-Methods Clin Develop. 2018;10:57–67.
Article
CAS
Google Scholar
Conte F, Fiscon G, Licursi V, Bizzarri D, D’Antò T, Farina L, Paci P. A paradigm shift in medicine: a comprehensive review of network-based approaches. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2020;1863(6):194416.
Article
CAS
Google Scholar
Crowther MA. Pathogenesis of atherosclerosis. ASH Education Program Book. 2005;2005(1):436–41.
Google Scholar
Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. J Clin Investig. 2000;105(11):1605–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daugherty A, Rateri DL, Lu H, Inagami T, Cassis LA. Hypercholesterolemia stimulates angiotensin peptide synthesis and contributes to atherosclerosis through the AT1A receptor. Circulation. 2004;110(25):3849–57.
Article
CAS
PubMed
Google Scholar
Dong X, Park S, Lin X, Copps K, Yi X, White MF. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Investig. 2006;116(1):101–14.
Article
CAS
PubMed
Google Scholar
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and interacting proteins in leukocyte trafficking, immune suppression, and immunodeficiency disease. Front Immunol. 2019;10:254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falcone R, Conte F, Fiscon G, Pecce V, Sponziello M, Durante C, Verrienti A, et al. BRAF V600E-mutant cancers display a variety of networks by SWIM analysis: Prediction of vemurafenib clinical response. Endocrine. 2019;64(2):406–13.
Article
CAS
PubMed
Google Scholar
Finney AC, Stokes KY, Pattillo CB, Orr AW. Integrin signaling in atherosclerosis. Cell Mol Life Sci. 2017;74(12):2263–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiscon G, Conte F, Licursi V, Nasi S, Paci P. Computational identification of specific genes for glioblastoma stem-like cells identity. Sci Rep. 2018;8(1):1–10.
Google Scholar
Fountain JH, Lappin SL. Physiology, renin angiotensin system. (2017)
Grimaldi AM, Conte F, Pane K, Fiscon G, Mirabelli P, Baselice S, Salvatore M, et al. The new paradigm of network medicine to analyze breast cancer phenotypes. Int J Mol Sci. 2020;21(18):6690.
Article
CAS
PubMed Central
Google Scholar
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478.
Article
CAS
PubMed
PubMed Central
Google Scholar
https://www.world-heart-federation.org/world-heart-day/world-heart-day-2019/cvds
https://go.drugbank.com/
https://www.ncbi.nlm.nih.gov/gene
https://string-db.org/
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PM, Thomas WG. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimulis. Pharmacol Rev. 2015;67(4):754–819.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keidar S. Angiotensin, LDL peroxidation and atherosclerosis. Life Sci. 1998;63(1):1–11.
Article
CAS
PubMed
Google Scholar
Kota RS, Ramana CV, Tenorio FA, Enelow RI, Rutledge JC. Differential effects of lipoprotein lipase on tumor necrosis factor-α and interferon-γ-mediated gene expression in human endothelial cells. J Biol Chem. 2005;280(35):31076–84.
Article
CAS
PubMed
Google Scholar
Li J, Chen L, Wang S, Zhang Y, Kong X, Huang T, Cai Y-D. A computational method using the random walk with restart algorithm for identifying novel epigenetic factors. Mol Genet Genomics. 2018;293(1):293–301.
Article
CAS
PubMed
Google Scholar
Li L, Wang Y, An L, Kong X, Huang T. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière’s disease. PLoS ONE. 2017;12(8):e0182592.
Article
PubMed
PubMed Central
CAS
Google Scholar
Licursi V, Conte F, Fiscon G, Paci P. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics. 2019;20(1):1–10.
Article
Google Scholar
Lu H, Balakrishnan A, Howatt DA, Wu C, Charnigo R, Liau G, Daugherty A, et al. Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br J Pharmacol. 2012;165(6):2000–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu H, Wu C, Howatt DA, Balakrishnan A, Moorleghen JJ, Chen X, Crooke RM, et al. Angiotensinogen exerts effects independent of angiotensin II. Arterioscler Thromb Vasc Biol. 2016;36(2):256–65.
Article
CAS
PubMed
Google Scholar
Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang N, Qi X-Y, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J Clin Investig. 2013;123(5):1939–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet. 2004;5:189–218.
Article
CAS
PubMed
Google Scholar
Ma K, Miao Y, Gao Y, Tian J, Gao L, Ye D, Qin X. Increasing the level of IRS-1 and insulin pathway sensitivity by natural product Carainterol A. Molecules. 2016;21(10):1303.
Article
PubMed Central
CAS
Google Scholar
Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal. 2009;7(1):1–15.
Article
CAS
Google Scholar
Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, Gonçalves DC. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol. 2018;9:526.
Article
PubMed
PubMed Central
Google Scholar
Matsumoto M, Ogawa W, Teshigawara K, Inoue H, Miyake K, Sakaue H, Kasuga M. Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes. 2002;51(6):1672–80.
Article
CAS
PubMed
Google Scholar
Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med. 2002;80(12):753–69.
Article
CAS
PubMed
Google Scholar
Mead JR, Ramji DP. The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res. 2002;55(2):261–9.
Article
CAS
PubMed
Google Scholar
Merched A, Tollefson K, Chan L. β2 integrins modulate the initiation and progression of atherosclerosis in low-density lipoprotein receptor knockout mice. Cardiovasc Res. 2010;85(4):853–63.
Article
CAS
PubMed
Google Scholar
Monchusi B, Kaur M. microRNAs targeting cellular cholesterol: implications for combating anticancer drug resistance. Genes Cancer. 2020;11(1–2):20.
Article
PubMed
PubMed Central
Google Scholar
Olivecrona G. Role of lipoprotein lipase in lipid metabolism. Curr Opin Lipidol. 2016;27(3):233–41.
Article
CAS
PubMed
Google Scholar
Paci P, Fiscon G, Conte F, Licursi V, Morrow J, Hersh C, Silverman EK, et al. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci Rep. 2020;10(1):1–18.
Article
CAS
Google Scholar
Paci P, Fiscon G, Conte F, Wang R-S, Farina L, Loscalzo J. Gene co-expression in the interactome: moving from correlation toward causation via an integrated approach to disease module discovery. NPJ Syst Biol Appl. 2021;7(1):1–11.
Article
Google Scholar
Pan Y, Lu L, Chen J, Zhong Y, Dai Z. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma. Hereditas. 2018;155(1):1–8.
Article
Google Scholar
Panebianco V, Pecoraro M, Fiscon G, Paci P, Farina L, Catalano C. Prostate cancer screening research can benefit from network medicine: an emerging awareness. NPJ Syst Biol Appl. 2020;6(1):1–6.
Article
Google Scholar
Pirahanchi Y, Sharma S. Biochemistry, lipoprotein lipase. StatPearls [Internet]. (2020)
Previs SF, Withers DJ, Ren J-M, White MF, Shulman GI. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. J Biol Chem. 2000;275(50):38990–4.
Article
CAS
PubMed
Google Scholar
Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Zhao X, et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/β-catenin signaling pathway. BMC Genomics. 2010;11(1):1–10.
Article
CAS
Google Scholar
Romaine SP, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015;101(12):921–8.
Article
CAS
PubMed
Google Scholar
Ross S, Gerstein H, Paré G. The genetic link between diabetes and atherosclerosis. Can J Cardiol. 2018;34(5):565–74.
Article
PubMed
Google Scholar
Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Ideker T, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9(11):1069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarajlić A, Janjić V, Stojković N, Radak D, Pržulj N. Network topology reveals key cardiovascular disease genes. PLoS ONE. 2013;8(8):e71537.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh KD, Karnik SS. (2016). Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal 1(2).
Singh RB, Mengi SA, Xu Y-J, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: A multifactorial process. Exp Clin Cardiol. 2002;7(1):40.
CAS
PubMed
PubMed Central
Google Scholar
Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, Rudan I, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health. 2020;8(5):e721–9.
Article
PubMed
Google Scholar
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Bork P, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.
Article
CAS
PubMed
Google Scholar
Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Bork, P., et al (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, gkw937.
Takahashi M, Yagyu H, Tazoe F, Nagashima S, Ohshiro T, Okada K, Ishibashi S, et al. Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity. J Lipid Res. 2013;54(4):1124–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tieri, P., Farina, L., Petti, M., Astolfi, L., Paci, P., & Castiglione, F. (2019). Network inference and reconstruction in bioinformatics.
Udhaya Kumar S, Thirumal Kumar D, Bithia R, Sankar S, Magesh R, Sidenna M, Zayed H, et al. Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: a systematic and bioinformatics approach. Front Genet. 2020;11:734.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Olson EN, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci. 2008;105(35):13027–32.
Article
PubMed
PubMed Central
Google Scholar
Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, Sethupathy P, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57(2):533–42.
Article
CAS
PubMed
Google Scholar
Walayat, A., Yang, M., & Xiao, D. (2018). Therapeutic implication of miRNA in human disease Antisense therapy: IntechOpen.
Wang J, Song Y, Zhang Y, Xiao H, Sun Q, Hou N, Zhan D, et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res. 2012;22(3):516–27.
Article
CAS
PubMed
Google Scholar
Wang Y, Nishina PM, Naggert JK. Degradation of IRS1 leads to impaired glucose uptake in adipose tissue of the type 2 diabetes mouse model TALLYHO/Jng. J Endocrinol. 2009;203(1):65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinstock PH, Bisgaier CL, Aalto-Setälä K, Radner H, Ramakrishnan R, Levak-Frank S, Breslow JL, et al. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J Clin Investig. 1995;96(6):2555–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Gower RM, Wang H, Dai Perrard X-Y, Ma R, Bullard DC, Simon SI, et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation. 2009;119(20):2708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu P, Wang Q, Jiang C, Chen C, Liu Y, Chen Y, Zeng Y. MicroRNA-29a is involved lipid metabolism dysfunction and insulin resistance in C2C12 myotubes by targeting PPARδ. Mol Med Rep. 2018;17(6):8493–501.
CAS
PubMed
Google Scholar
Xu X, Zhao Z, Li G. The therapeutic potential of MicroRNAs in Atrial Fibrillation. Mediators of inflammation, 2020.
Yoke Yin C, So Ha T, Abdul Kadir K. Effects of glycyrrhizic acid on peroxisome proliferator-activated receptor gamma (PPAR), lipoprotein lipase (LPL), serum lipid and HOMA-IR in rats. PPAR Research. (2010)
Yoon J, Blumer A, Lee K. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics. 2006;22(24):3106–8.
Article
CAS
PubMed
Google Scholar
Yosten GL, Samson WK. Cardiovascular neuroendocrinology. Handbook of Neuroendocrinology (pp 307–327): Elsevier. (2012)
Yu X-H, Zhang D-W, Zheng X-L, Tang C-K. Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res. 2019;73:65–91.
Article
CAS
PubMed
Google Scholar
Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin–angiotensin–aldosterone system. Nat Rev Drug Discovery. 2002;1(8):621–36.
Article
CAS
PubMed
Google Scholar
Zhang L, Li X, Tai J, Li W, Chen L. Predicting candidate genes based on combined network topological features: a case study in coronary artery disease. PLoS ONE. 2012;7(6):e39542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang S, Cheng Z, Wang Y, Han T. The risks of miRNA therapeutics: in a drug target perspective. Drug Des Dev Ther. 2021;15:721.
Article
Google Scholar
Zhang W, Wang Q, Feng Y, Chen X, Yang L, Xu M, Gao D, et al. MicroRNA-26a protects the heart against hypertension-induced myocardial fibrosis. J Am Heart Assoc. 2020;9(18):e017970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Sun X, Icli B, Feinberg MW. Emerging roles for microRNAs in diabetic microvascular disease: novel targets for therapy. Endocrinol Rev. 2017;38(2):145–68.
Article
CAS
Google Scholar
Zhang Y, Zeng T, Chen L, Ding S, Huang T, Cai Y-D. Identification of COVID-19 infection-related human genes based on a random walk model in a virus-human protein interaction network. BioMed Res Int. 2020;2020:1.
Article
CAS
Google Scholar
Zhou S-S, Jin J-P, Wang J-Q, Zhang Z-G, Freedman JH, Zheng Y, Cai L. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073–84.
Article
CAS
PubMed
PubMed Central
Google Scholar