Tarsy D, Lungu C, Baldessarini RJ. Epidemiology of tardive dyskinesia before and during the era of modern antipsychotic drugs. J Handb Clin Neurol. 2011;100:601–16.
Article
Google Scholar
Lanning RK, Zai CC, Muller DJ. Pharmacogenetics of tardive dyskinesia: an updated review of the literature. Pharmacogenomics. 2016;17(12):1339–51.
Article
CAS
Google Scholar
Correll CU. Epidemiology and Prevention of Tardive Dyskinesia. J Clin Psychiatry. 2017;78(9):e1426.
Article
Google Scholar
Voelker R. Tardive Dyskinesia drug approved. JAMA. 2017;317(19):1942.
Google Scholar
Morrow T. Two new drugs for Tardive Dyskinesia hit the market. Manag Care. 2018;27(1):35–6.
Google Scholar
Stegmayer K, Walther S, van Harten P. Tardive Dyskinesia Associated with atypical antipsychotics: prevalence, Mechanisms and Management Strategies. CNS Drugs. 2018;32(2):135–47.
Article
CAS
Google Scholar
Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry. 1998;155(9):1207–13.
Article
CAS
Google Scholar
Szota AM, Scheel-Krüger J. The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: preclinical and clinical results. Behav Pharmacol. 2020;31(6):511–23.
Article
CAS
Google Scholar
Cho CH, Lee HJ. Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:207–13.
Article
CAS
Google Scholar
Zhang XY, Yao JK. Oxidative stress and therapeutic implications in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:197–9.
Article
Google Scholar
Cadet JL, Lohr JB. Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E. Ann N Y Acad Sci. 1989;570:176–85.
Article
CAS
Google Scholar
Elkashef AM, Wyatt RJ. Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr Bull. 1999;25(4):731–40.
Article
CAS
Google Scholar
Lee HJ, Kang SG. Genetics of tardive dyskinesia. Int Rev Neurobiol. 2011;98:231–64.
Article
CAS
Google Scholar
Carroll LS, Owen MJ. Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med. 2009;1(10):;102.
Article
Google Scholar
Csoka AB, Szyf M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med Hypotheses. 2009;73(5):770–80.
Article
CAS
Google Scholar
Gejman PV, Sanders AR, Duan J. The role of genetics in the etiology of schizophrenia. Psychiatr Clin North Am. 2010;33(1):35–66.
Article
Google Scholar
Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, et al. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry. 2014;4:e339.
Article
CAS
Google Scholar
Hannon E, Dempster E, Viana J, Burrage J, Smith AR, Macdonald R, et al. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 2016;17(1):176.
Article
Google Scholar
Lee SA, Huang KC. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med Genomics. 2016;9(Suppl 3):68.
Article
Google Scholar
Pries LK, Gülöksüz S, Kenis G. DNA methylation in Schizophrenia. Adv Exp Med Biol. 2017;978:211–36.
Article
CAS
Google Scholar
Mikeska T, Felsberg J, Hewitt CA, Dobrovic A. Analysing DNA methylation using bisulphite pyrosequencing. Methods Mol Biol. 2011;791:33–5.
Article
CAS
Google Scholar
Fakruddin M, Chowdhury A. Pyrosequencing-An alternative to traditional Sanger sequencing. Am J Biochem Biotech. 2012;8:14–20.
Article
CAS
Google Scholar
Delaney C, Garg SK, Yung R. Analysis of DNA methylation by pyrosequencing. Methods Mol Biol. 2015;1343:249–64.
Article
CAS
Google Scholar
Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A, et al. DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res. 2013;77(4):208–14.
Article
CAS
Google Scholar
Lott SA, Burghardt PR, Burghardt KJ, Bly MJ, Grove TB, Ellingrod VL. The influence of metabolic syndrome, physical activity and genotype on catechol-O-methyl transferase promoter-region methylation in schizophrenia. Pharmacogenomics J. 2013;13(3):264–71.
Article
CAS
Google Scholar
Gao S, Cheng J, Li G, Sun T, Xu Y, Wang Y, et al. Catechol-O-methyltransferase gene promoter methylation as a peripheral biomarker in male schizophrenia. Eur Psychiatry. 2017;44:39–46.
Article
CAS
Google Scholar
Hu TM, Hsu SH, Tsai SM, Cheng MC. DNA methylation analysis of the EGR3 gene in patients of schizophrenia. Psychiatry Res. 2017;251:115–17.
Article
CAS
Google Scholar
Yoshino Y, Ozaki Y, Yamazaki K, Sao T, Mori Y, Ochi S, et al. DNA methylation changes in Intron 1 of triggering receptor expressed on myeloid cell 2 in japanese Schizophrenia subjects. Front Neurosci. 2017;11:275.
Article
Google Scholar
Li Y, Wang KS, Zhang P, Huang J, An H, Wang N, et al. Quantitative DNA methylation analysis of DLGAP2 gene using pyrosequencing in schizophrenia with tardive dyskinesia: a linear mixed model approach. Sci Rep. 2018;8(1):17466.
Article
Google Scholar
Kolble K. Regional mapping of short tandem repeats on human chromosome 10: cytochrome P450 gene CYP2E, D10S196, D10S220, and D10S225. Genomics. 1993;18:702–04.
Article
CAS
Google Scholar
Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5-prime-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem. 1991;110:559–65.
Article
CAS
Google Scholar
Wang S-M, Zhu A-P, Li D, Wang Z, Zhang P, Zhang G-L. Frequencies of genotypes and alleles of the functional SNPs in CYP2C19 and CYP2E1 in mainland chinese Kazakh, Uygur and Han populations. J Hum Genet. 2009;54:372–75.
Article
CAS
Google Scholar
Catanzaro I, Naselli F, Saverini M, Giacalone A, Montalto G, Caradonna F. Cytochrome P450 2E1 variable number tandem repeat polymorphisms and health risks: a genotype-phenotype study in cancers associated with drinking and/or smoking. Mol Med Rep. 2012;6(2):416–20.
Article
CAS
Google Scholar
Huo R, Tang K, Wei Z, Shen L, Xiong Y, Wu X, et al. Genetic polymorphisms in CYP2E1: association with schizophrenia susceptibility and risperidone response in the chinese Han population. PLoS ONE. 2012;7(5):e34809.
Article
CAS
Google Scholar
Kaut O, Schmitt I, Wüllner U. Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics. 2012;13(1):87–91.
Article
CAS
Google Scholar
Naselli F, Catanzaro I, Bellavia D, Perez A, Sposito L, Caradonna F. Role and importance of polymorphisms with respect to DNA methylation for the expression of CYP2E1 enzyme. Gene. 2014;536(1):29–39.
Article
CAS
Google Scholar
Kumsta R, Marzi SJ, Viana J, Dempster EL, Crawford B, Rutter M, et al. Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1. Transl Psychiatry. 2016;6(6):830.
Article
Google Scholar
Chamorro JG, Castagnino JP, Aidar O, et al. Effect of gene-gene and gene-environment interactions associated with antituberculosis drug-induced hepatotoxicity. Pharmacogenet Genomics. 2017;27(10):363–71.
Article
CAS
Google Scholar
Hartman JH, Miller GP, Meyer JN. Toxicological implications of mitochondrial localization of CYP2E1. Toxicol Res (Camb). 2017;6(3):273–89.
Article
CAS
Google Scholar
Zhang W, Lu D, Dong W, Zhang L, Zhang X, Quan X, et al. Expression of CYP2E1 increases oxidative stress and induces apoptosis of cardiomyocytes in transgenic mice. FEBS J. 2011;278(9):1484–92.
Article
CAS
Google Scholar
Lakshman MR, Garige M, Gong MA, Leckey L, Varatharajalu R, Redman RS, et al. CYP2E1, oxidative stress, post-translational modifications and lipid metabolism. Subcell Biochem. 2013;67:199–233.
Article
CAS
Google Scholar
Jiménez-Garza O, Baccarelli AA, Byun HM, Márquez-Gamiño S, Barrón-Vivanco BS, Albores A. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: relationship with oxidative stress and smoking habit. Toxicol Appl Pharmacol. 2015;286(3):207–15.
Article
Google Scholar
Schooler NR, Kane JM. Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry. 1982;39(4):486–7.
Article
CAS
Google Scholar
Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–76.
Article
CAS
Google Scholar
Lin L, Xu C. Arcsine-based transformations for meta-analysis of proportions: pros, cons, and alternatives. Health Sci Rep. 2020;3(3):e178.
Article
Google Scholar
Bolt HM, Roos PH, Their R. The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: consequences for occupational and environmental medicine. Int Arch Occup Environ Health. 2003;76(3):174–85.
Article
CAS
Google Scholar
Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res. 2005;569(1–2):101–10.
Article
CAS
Google Scholar
Liu H, Baliga R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 2003;63(5):1687–96.
Article
CAS
Google Scholar
Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Re. 1999;31(4):261–72.
Article
CAS
Google Scholar
Zhang H, KJA D, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2105; 88(Pt B):314–36.
Hackett JA, Surani MA. DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Bio Sci. 2013;368(1609):20110328.
Article
Google Scholar
Gordon K, Clouaire T, Bao XX, Kemp SE, Xenophontos M, de Las Heras JI, et al. Immortality, but not oncogenic transformation, of primary human cells leads to epigenetic reprogramming of DNA methylation and gene expression. Nucleic Acids Res. 2014;42(6):3529–41.
Article
CAS
Google Scholar
Shah A, Ong CE, Pan Y. Unveiling the role of cytochrome P450 (2E1) in human brain specifically in Parkinson’s Disease - Literature Review. Curr Drug Metab. 2021;22(9):698–708.
Article
CAS
Google Scholar
Kaut O, Schmitt I, Stahl F, Fröhlich H, Hoffmann P, Gonzalez FJ, Wüllner U. Epigenome-Wide analysis of DNA methylation in Parkinson’s Disease Cortex. Life (Basel). 2022;12(4):502.
CAS
Google Scholar
Iwahashi K, Nakamura K, Furukawa A, Okuyama E, Miyatake R, et al. No linkage of the cytochrome P-450IIE1 (CYP2E1) C1/C2 polymorphism to schizophrenia. Hum Exp Toxicol. 1997;16:208–11.
Article
CAS
Google Scholar
Zhu Y, Mordaunt CE, Yasui DH, Marathe R, Coulson RL, Dunaway KW, Jianu JM, Walker CK, Ozonoff S, Hertz-Picciotto I, Schmidt RJ, LaSalle JM. Placental DNA methylation levels at CYP2E1 and IRS2 are associated with child outcome in a prospective autism study. Hum Mol Genet. 2019;28(16):2659–74.
Article
CAS
Google Scholar
Zhang P, Li YL, An HM, Tan YL. Preliminary construction of DNA methylation profiles of schizophrenia patients with tardive dyskinesia. Chin J Psychiatry. 2018;51(1):13–9.
Google Scholar
Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry. 2019;9(1):47.
Article
Google Scholar
High R. An introduction to statistical power calculations for linear models with SAS 9.1. https://www.lexjansen.com/pnwsug/2007/Robin%20High%20-%20Statistical%20Power%20Calculations%20for%20Linear%20Models.pdf (2007). 2007.