World Alzheimer Report 2015-the Global Impact of Dementia. Alzheimer’s Disease International. [https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf]
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic dysfunction in Alzheimer’s disease: from basic neurobiology to clinical approaches. J Alzheimers Dis. 2018;64(s1):S405–26. https://doi.org/10.3233/jad-179911.
Article
Google Scholar
Cai H, Cong WN, Ji S, Rothman S, Maudsley S, Martin B. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr Alzheimer Res. 2012;9(1):5–17.
Article
CAS
Google Scholar
Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002;13(2):84–9.
Article
CAS
Google Scholar
Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51. https://doi.org/10.1210/er.2005-0005.
Article
CAS
Google Scholar
Diniz BS, Teixeira AL, Campos AC, Miranda AS, Rocha NP, Talib LL, Gattaz WF, Forlenza OV. Reduced serum levels of adiponectin in elderly patients with major depression. J Psychiatr Res. 2012;46(8):1081–5. https://doi.org/10.1016/j.jpsychires.2012.04.028.
Article
Google Scholar
Calvani M, Scarfone A, Granato L, Mora EV, Nanni G, Castagneto M, Greco AV, Manco M, Mingrone G. Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes. 2004;53(4):939–47.
Article
CAS
Google Scholar
Chen B, Liao WQ, Xu N, Xu H, Wen JY, Yu CA, Liu XY, Li CL, Zhao SM, Campbell W. Adiponectin protects against cerebral ischemia-reperfusion injury through anti-inflammatory action. Brain Res. 2009;1273:129–37. https://doi.org/10.1016/j.brainres.2009.04.002.
Article
CAS
Google Scholar
Kollias A, Tsiotra PC, Ikonomidis I, Maratou E, Mitrou P, Kyriazi E, Boutati E, Lekakis J, Economopoulos T, Kremastinos DT, et al. Adiponectin levels and expression of adiponectin receptors in isolated monocytes from overweight patients with coronary artery disease. Cardiovasc Diabetol. 2011;10:14. https://doi.org/10.1186/1475-2840-10-14.
Article
CAS
Google Scholar
Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, Berria R, Belfort R, DeFronzo RA, Mandarino LJ, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia. 2004;47(5):816–20. https://doi.org/10.1007/s00125-004-1359-x.
Article
CAS
Google Scholar
Ma J, Zhang W, Wang HF, Wang ZX, Jiang T, Tan MS, Yu JT, Tan L. Peripheral blood adipokines and insulin levels in patients with Alzheimer’s disease: a replication study and meta-analysis. Curr Alzheimer Res. 2016;13(3):223–33.
Article
CAS
Google Scholar
Waragai M, Adame A, Trinh I, Sekiyama K, Takamatsu Y, Une K, Masliah E, Hashimoto M. Possible involvement of adiponectin, the anti-diabetes molecule, in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis. 2016;52(4):1453–9. https://doi.org/10.3233/jad-151116.
Article
CAS
Google Scholar
Yu Z, Li W, Hou D, Zhou L, Deng Y, Tian M, Feng X. Relationship between adiponectin gene polymorphisms and late-onset Alzheimer’s disease. PLoS ONE. 2015;10(4): e0125186. https://doi.org/10.1371/journal.pone.0125186.
Article
CAS
Google Scholar
van Himbergen TM, Beiser AS, Ai M, Seshadri S, Otokozawa S, Au R, Thongtang N, Wolf PA, Schaefer EJ. Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease: results from the Framingham Heart Study. Arch Neurol. 2012;69(5):594–600. https://doi.org/10.1001/archneurol.2011.670.
Article
Google Scholar
Carter CL, Resnick EM, Mallampalli M, Kalbarczyk A. Sex and gender differences in Alzheimer’s disease: recommendations for future research. J Womens Health (Larchmt). 2012;21(10):1018–23. https://doi.org/10.1089/jwh.2012.3789.
Article
Google Scholar
Dukic L, Simundic AM, Martinic-Popovic I, Kackov S, Diamandis A, Begcevic I, Diamandis EP. The role of human kallikrein 6, clusterin and adiponectin as potential blood biomarkers of dementia. Clin Biochem. 2016;49(3):213–8. https://doi.org/10.1016/j.clinbiochem.2015.10.014.
Article
CAS
Google Scholar
Teixeira AL, Diniz BS, Campos AC, Miranda AS, Rocha NP, Talib LL, Gattaz WF, Forlenza OV. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. NeuroMol Med. 2013;15(1):115–21. https://doi.org/10.1007/s12017-012-8201-2.
Article
CAS
Google Scholar
Ng RC, Cheng OY, Jian M, Kwan JS, Ho PW, Cheng KK, Yeung PK, Zhou LL, Hoo RL, Chung SK, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener. 2016;11(1):71. https://doi.org/10.1186/s13024-016-0136-x.
Article
CAS
Google Scholar
Chan KH, Lam KS, Cheng OY, Kwan JS, Ho PW, Cheng KK, Chung SK, Ho JW, Guo VY, Xu A. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity. PLoS ONE. 2012;7(12): e52354. https://doi.org/10.1371/journal.pone.0052354.
Article
CAS
Google Scholar
Vaxillaire M, Dechaume A, Vasseur-Delannoy V, Lahmidi S, Vatin V, Lepretre F, Boutin P, Hercberg S, Charpentier G, Dina C, et al. Genetic analysis of ADIPOR1 and ADIPOR2 candidate polymorphisms for type 2 diabetes in the Caucasian population. Diabetes. 2006;55(3):856–61.
Article
CAS
Google Scholar
Broedl UC, Lehrke M, Fleischer-Brielmaier E, Tietz AB, Nagel JM, Goke B, Lohse P, Parhofer KG. Genetic variants of adiponectin receptor 2 are associated with increased adiponectin levels and decreased triglyceride/VLDL levels in patients with metabolic syndrome. Cardiovasc Diabetol. 2006;5:11. https://doi.org/10.1186/1475-2840-5-11.
Article
CAS
Google Scholar
Halvatsiotis I, Tsiotra PC, Ikonomidis I, Kollias A, Mitrou P, Maratou E, Boutati E, Lekakis J, Dimitriadis G, Economopoulos T, et al. Genetic variation in the adiponectin receptor 2 (ADIPOR2) gene is associated with coronary artery disease and increased ADIPOR2 expression in peripheral monocytes. Cardiovasc Diabetol. 2010;9:10. https://doi.org/10.1186/1475-2840-9-10.
Article
CAS
Google Scholar
Esmaili S, Hemmati M, Karamian M. Physiological role of adiponectin in different tissues: a review. Arch Physiol Biochem. 2020;126(1):67–73. https://doi.org/10.1080/13813455.2018.1493606.
Article
CAS
Google Scholar
Wolf AM, Wolf D, Avila MA, Moschen AR, Berasain C, Enrich B, Rumpold H, Tilg H. Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice. J Hepatol. 2006;44(3):537–43. https://doi.org/10.1016/j.jhep.2005.08.019.
Article
CAS
Google Scholar
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin synthesis, secretion and extravasation from circulation to interstitial space. Physiology. 2021;36(3):134–49. https://doi.org/10.1152/physiol.00031.2020.
Article
CAS
Google Scholar
Zhang Y, Cao H, Chen J, Li Y, Xu A, Wang Y. Adiponectin-expressing Treg facilitate T lymphocyte development in thymic nurse cell complexes. Commun Biol. 2021;4(1):344. https://doi.org/10.1038/s42003-021-01877-w.
Article
CAS
Google Scholar
Olazagasti JM, Hein M, Crowson CS, de Padilla CL, Peterson E, Baechler EC, Reed AM. Adipokine gene expression in peripheral blood of adult and juvenile dermatomyositis patients and their relation to clinical parameters and disease activity measures. J Inflamm. 2015;12(1):29. https://doi.org/10.1186/s12950-015-0075-2.
Article
CAS
Google Scholar
Tsai J-S, Chuang L-M, Chen C-S, Liang C-J, Chen Y-L, Chen C-Y. Troglitazone and Δ2Troglitazone enhance adiponectin expression in monocytes/macrophages through the AMP-activated protein kinase pathway. Mediat Inflamm. 2014;2014:726068. https://doi.org/10.1155/2014/726068.
Article
CAS
Google Scholar
Luo N, Chung BH, Wang X, Klein RL, Tang C-K, Garvey WT, Fu Y. Enhanced adiponectin actions by overexpression of adiponectin receptor 1 in macrophages. Atherosclerosis. 2013;228(1):124–35. https://doi.org/10.1016/j.atherosclerosis.2013.02.026.
Article
CAS
Google Scholar
van Stijn CM, Kim J, Lusis AJ, Barish GD, Tangirala RK. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 2015;29(2):636–49. https://doi.org/10.1096/fj.14-253831.
Article
CAS
Google Scholar
Ott R, Stupin JH, Melchior K, Schellong K, Ziska T, Dudenhausen JW, Henrich W, Rancourt RC, Plagemann A. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome. Clin Epigenetics. 2018;10(1):131. https://doi.org/10.1186/s13148-018-0567-z.
Article
CAS
Google Scholar
Houde A-A, Légaré C, Hould F-S, Lebel S, Marceau P, Tchernof A, Vohl M-C, Hivert M-F, Bouchard L. Cross-tissue comparisons of leptin and adiponectin: DNA methylation profiles. Adipocyte. 2014;3(2):132–40. https://doi.org/10.4161/adip.28308.
Article
CAS
Google Scholar
García-Cardona MC, Huang F, García-Vivas JM, López-Camarillo C, del Río Navarro BE, Navarro Olivos E, Hong-Chong E, Bolaños-Jiménez F, Marchat LA. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance. Int J Obes. 2014;38(11):1457–65. https://doi.org/10.1038/ijo.2014.30.
Article
CAS
Google Scholar
Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, Shimomura I, Hotta K, Kuriyama H, Kihara S, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes. 2000;24(7):861–8. https://doi.org/10.1038/sj.ijo.0801244.
Article
CAS
Google Scholar
de Martin X, Sodaei R, Santpere G. Mechanisms of binding specificity among bHLH transcription factors. Int J Mol Sci. 2021;22(17):9150. https://doi.org/10.3390/ijms22179150.
Article
CAS
Google Scholar
Doran AC, Meller N, Cutchins A, Deliri H, Slayton RP, Oldham SN, Kim JB, Keller SR, McNamara CA. The helix–loop–helix factors Id3 and E47 are novel regulators of adiponectin. Circ Res. 2008;103(6):624–34. https://doi.org/10.1161/circresaha.108.175893.
Article
CAS
Google Scholar
Park YM, Lee Y-H, Kim SH, Lee EY, Kim K-S, Williams DR, Lee HC. Snail, a transcriptional regulator, represses adiponectin expression by directly binding to an E-box motif in the promoter. Metabolism. 2012;61(11):1622–32. https://doi.org/10.1016/j.metabol.2012.04.014.
Article
CAS
Google Scholar
Association AP. Diagnostic and statistical manual of mental disorders, 5th edn; 2013.
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):263–9. https://doi.org/10.1016/j.jalz.2011.03.005.
Article
Google Scholar
Une K, Takei YA, Tomita N, Asamura T, Ohrui T, Furukawa K, Arai H. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol. 2010;18(7):1006–9. https://doi.org/10.1111/j.1468-1331.2010.03194.x.
Article
Google Scholar
Mooldijk SS, Ikram MK, Ikram MA. Adiponectin, leptin, and resistin and the risk of dementia. J Gerontol Ser A. 2021. https://doi.org/10.1093/gerona/glab267.
Article
Google Scholar
Benavente KSK, Palmer RF, Royall DR. Serum adiponectin is related to dementia (1758–535X (Electronic)).
Khemka VK. Altered serum levels of adipokines and insulin in probable Alzheimer’s disease. J Alzheimer’s Dis. 2014;41(2):525–33. https://doi.org/10.3233/jad-140006.
Article
CAS
Google Scholar
Wennberg AMV, Gustafson D, Hagen CE, Roberts RO, Knopman D, Jack C, Petersen RC, Mielke MM. Serum adiponectin levels, neuroimaging, and cognition in the Mayo Clinic study of aging. J Alzheimer’s Dis. 2016;53(2):573–81. https://doi.org/10.3233/jad-151201.
Article
CAS
Google Scholar
Hafiane A, Gasbarrino K, Daskalopoulou SS. The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism. Metabolism. 2019;100: 153953. https://doi.org/10.1016/j.metabol.2019.153953.
Article
CAS
Google Scholar
Gariballa S, Alkaabi J, Yasin J, Al Essa A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr Disord. 2019;19(1):55. https://doi.org/10.1186/s12902-019-0386-z.
Article
CAS
Google Scholar
Forny-Germano L, De Felice FG, Vieira MNN. The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease. Front Neurosci. 2019;12(1027):1027. https://doi.org/10.3389/fnins.2018.01027.
Article
Google Scholar
Yamamoto Y, Hirose H, Saito I, Tomita M, Taniyama M, Matsubara K, Okazaki Y, Ishii T, Nishikai K, Saruta T. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci (Lond). 2002;103(2):137–42. https://doi.org/10.1042/cs1030137.
Article
CAS
Google Scholar
Schulze MB, Rimm EB, Shai I, Rifai N, Hu FB. Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes. Diabetes Care. 2004;27(7):1680–7. https://doi.org/10.2337/diacare.27.7.1680.
Article
CAS
Google Scholar
Swarbrick MM, Havel PJ. Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans. Metab Syndr Relat Disord. 2008;6(2):87–102. https://doi.org/10.1089/met.2007.0029.
Article
CAS
Google Scholar
Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem J. 2009;425(1):41–52. https://doi.org/10.1042/bj20091045.
Article
Google Scholar
Liu M, Liu F. Up- and down-regulation of adiponectin expression and multimerization: mechanisms and therapeutic implication. Biochimie. 2012;94(10):2126–30. https://doi.org/10.1016/j.biochi.2012.01.008.
Article
CAS
Google Scholar
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. https://doi.org/10.1016/S0092-8674(00)81014-4.
Article
CAS
Google Scholar
Kivimäki M, Luukkonen R, Batty GD, Ferrie JE, Pentti J, Nyberg ST, Shipley MJ, Alfredsson L, Fransson EI, Goldberg M, et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimer’s Dementia. 2018;14(5):601–9. https://doi.org/10.1016/j.jalz.2017.09.016.
Article
Google Scholar
Ma Y, Ajnakina O, Steptoe A, Cadar D. Higher risk of dementia in English older individuals who are overweight or obese. Int J Epidemiol. 2020;49(4):1353–65. https://doi.org/10.1093/ije/dyaa099.
Article
Google Scholar
Chen R, Shu Y, Zeng Y. Links between adiponectin and dementia: from risk factors to pathophysiology. Front Aging Neurosci. 2020;11:356.
Article
Google Scholar
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. https://doi.org/10.1038/npp.2012.112.
Article
CAS
Google Scholar
Dias S, Adam S, Abrahams Y, Rheeder P, Pheiffer C. Adiponectin DNA methylation in South African women with gestational diabetes mellitus: Effects of HIV infection. PLoS ONE. 2021;16(3): e0248694. https://doi.org/10.1371/journal.pone.0248694.
Article
CAS
Google Scholar
Houshmand-Oeregaard A, Hansen NS, Hjort L, Kelstrup L, Broholm C, Mathiesen ER, Clausen TD, Damm P, Vaag A. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenet. 2017;9:37–37. https://doi.org/10.1186/s13148-017-0338-2.
Article
CAS
Google Scholar
Hoffstedt J, Arvidsson E, Sjölin E, Wåhlén K, Arner P. Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J Clin Endocrinol Metab. 2004;89(3):1391–6. https://doi.org/10.1210/jc.2003-031458.
Article
CAS
Google Scholar
Spranger J, Verma S, Gohring I, Bobbert T, Seifert J, Sindler AL, Pfeiffer A, Hileman SM, Tschop M, Banks WA. Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes. 2006;55(1):141–7.
Article
CAS
Google Scholar
Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 2007;6(1):55–68. https://doi.org/10.1016/j.cmet.2007.06.003.
Article
CAS
Google Scholar
Kim MW, Abid N, Jo MH, Jo MG, Yoon GH, Kim MO. Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer’s disease-like pathologies. Sci Rep. 2017;7(1):12435. https://doi.org/10.1038/s41598-017-12632-9.
Article
CAS
Google Scholar
Saido T, Leissring MA. Proteolytic degradation of amyloid ?-Protein. Cold Spring Harb Perspect Med. 2012;2(6):6379. https://doi.org/10.1101/cshperspect.a006379.
Article
CAS
Google Scholar
Costarelli L, Malavolta M, Giacconi R, Provinciali M. Dysfunctional macrophages in Alzheimer Disease: another piece of the “macroph-aging” puzzle? Aging. 2017;9(8):1865–6. https://doi.org/10.18632/aging.101276.
Article
CAS
Google Scholar
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer’s disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci. 2017;74(12):2167–201. https://doi.org/10.1007/s00018-017-2463-7.
Article
CAS
Google Scholar
Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2005;7(3):221–32 (discussion 255–262).
Article
CAS
Google Scholar
Lovren F, Pan Y, Quan A, Szmitko PE, Singh KK, Shukla PC, Gupta M, Chan L, Al-Omran M, Teoh H, et al. Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am J Physiol Heart Circ Physiol. 2010;299(3):H656–63. https://doi.org/10.1152/ajpheart.00115.2010.
Article
CAS
Google Scholar
Chitre N, Ghumatkar P, Sadhana Sathaye D. The Role of M1/M2 Transition of the Brain Macrophages in Alzheimer’s Disease, vol. 11; 2016.
Lund H, Zhang X, Harris R. Regulation of amyloid beta oligomer phagocytosis by M1 and M2 macrophage polarization. J Neuroimmunol. 2014;275(1):87–8. https://doi.org/10.1016/j.jneuroim.2014.08.234.
Article
Google Scholar