Mahon S. Management of patients with a genetic variant of unknown significance. Oncol Nurs Forum. 2015;42(3):316–8. https://doi.org/10.1188/15.ONF.316-318.
Article
Google Scholar
Domchek SM, Bradbury A, Garber JE, Offit K, Robson ME. Multiplex genetic testing for cancer susceptibility: Out on the high wire without a net? J Clin Oncol. 2013;31(10):1267–70. https://doi.org/10.1200/JCO.2012.46.9403.
Article
Google Scholar
Lindor NM, McMaster ML, Lindor CJ, Greene MH. Concise handbook of familial cancer susceptibility syndromes. JNCI Monogr. 2008;2008(38):3–93. https://doi.org/10.1093/jncimonographs/lgn001.
Article
Google Scholar
Genetics, genomics, and cancer risk assessment—Weitzel—2011—CA: A Cancer Journal for Clinicians - Wiley Online Library. Accessed March 21, 2022. https://acsjournals.onlinelibrary.wiley.com/doi/full/https://doi.org/10.3322/caac.20128.
Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. https://doi.org/10.1126/science.7545954.
Article
CAS
Google Scholar
Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92. https://doi.org/10.1038/378789a0.
Article
CAS
Google Scholar
Futreal PA, Liu Q, Shattuck-Eidens D, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994;266(5182):120–2. https://doi.org/10.1126/science.7939630.
Article
CAS
Google Scholar
Collins FS. BRCA1—lots of mutations, lots of dilemmas. N Engl J Med. 1996;334(3):186–8. https://doi.org/10.1056/NEJM199601183340311.
Article
CAS
Google Scholar
Plon SE, Eccles DM, Easton D, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008;29(11):1282–91. https://doi.org/10.1002/humu.20880.
Article
CAS
Google Scholar
Walsh T, Lee MK, Casadei S, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci. 2010;107(28):12629–33. https://doi.org/10.1073/pnas.1007983107.
Article
Google Scholar
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Genetic/familial high risk assessment: Breast, Ovarian, and Pancreatic. Version 2.2022. NCCN. Published March 9, 2022. Accessed April 4, 2022. https://www.nccn.org/guidelines/guidelines-detail.
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Genetic/familial high risk assessment: Colorectal. Version 1.2021. NCCN. Published May 1, 2021. Accessed April 4, 2022. https://www.nccn.org/guidelines/guidelines-detail
Chappuis PO, Bolliger B, Bürki N, Buser K, Heini K. Genetic predisposition to breast and ovarian cancer. :6.
Stoll S, Unger S, Azzarello-Burri S, et al. Update Swiss guideline for counselling and testing for predisposition to breast, ovarian, pancreatic and prostate cancer: Swiss Group for Clinical Cancer Research (SAKK) N for CPT and C (CPTC), ed. Swiss Med Wkly. 2021. https://doi.org/10.4414/smw.2021.w30038.
Article
Google Scholar
Kastrinos F, Uno H, Ukaegbu C, et al. Development and validation of the PREMM5 model for comprehensive risk assessment of lynch syndrome. J Clin Oncol. 2017;35(19):2165–72. https://doi.org/10.1200/JCO.2016.69.6120.
Article
CAS
Google Scholar
Spurdle AB, Greville-Heygate S, Antoniou AC, et al. Towards controlled terminology for reporting germline cancer susceptibility variants: an ENIGMA report. J Med Genet. 2019;56(6):347–57. https://doi.org/10.1136/jmedgenet-2018-105872.
Article
CAS
Google Scholar
Thompson BA, Spurdle AB, Plazzer JP, et al. Application of a five-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants lodged on the InSiGHT locus-specific database. Nat Genet. 2014;46(2):107–15. https://doi.org/10.1038/ng.2854.
Article
CAS
Google Scholar
ClinVar - ClinGen | Clinical Genome Resource. Accessed October 30, 2022. https://www.clinicalgenome.org/data-sharing/clinvar/.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.
Article
Google Scholar
Easton DF, Deffenbaugh AM, Pruss D, et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet. 2007;81(5):873–83. https://doi.org/10.1086/521032.
Article
CAS
Google Scholar
Boonen RACM, Wiegant WW, Celosse N, et al. Functional analysis identifies damaging CHEK2 missense variants associated with increased cancer risk. Cancer Res. 2022;82(4):615–31. https://doi.org/10.1158/0008-5472.CAN-21-1845.
Article
CAS
Google Scholar
Shuen AY, Lanni S, Panigrahi GB, et al. Functional repair assay for the diagnosis of constitutional mismatch repair deficiency from non-neoplastic tissue. J Clin Oncol. 2019;37(6):461–70. https://doi.org/10.1200/JCO.18.00474.
Article
CAS
Google Scholar
Plon SE, Cooper HP, Parks B, et al. Genetic testing and cancer risk management recommendations by physicians for at-risk relatives. Genet Med. 2011;13(2):148–54. https://doi.org/10.1097/GIM.0b013e318207f564.
Article
Google Scholar
Richter S, Haroun I, Graham TC, Eisen A, Kiss A, Warner E. Variants of unknown significance in BRCA testing: impact on risk perception, worry, prevention and counseling. Ann Oncol. 2013;24:viii69–74. https://doi.org/10.1093/annonc/mdt312.
Article
Google Scholar
Culver J, Brinkerhoff C, Clague J, et al. Variants of uncertain significance in BRCA testing: evaluation of surgical decisions, risk perception, and cancer distress. Clin Genet. 2013;84(5):464–72. https://doi.org/10.1111/cge.12097.
Article
CAS
Google Scholar
Murray ML, Cerrato F, Bennett RL, Jarvik GP. Follow-up of carriers of BRCA1 and BRCA2 variants of unknown significance: variant reclassification and surgical decisions. Genet Med. 2011;13(12):998–1005. https://doi.org/10.1097/GIM.0b013e318226fc15.
Article
CAS
Google Scholar
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402. https://doi.org/10.1001/jama.2017.7112.
Article
CAS
Google Scholar
Kotsopoulos J. BRCA mutations and breast cancer prevention. Cancers. 2018;10(12):524. https://doi.org/10.3390/cancers10120524.
Article
CAS
Google Scholar
Easton DF. How many more breast cancer predisposition genes are there? Breast Cancer Res. 1999;1(1):14. https://doi.org/10.1186/bcr6.
Article
CAS
Google Scholar
Kurian AW, Hare EE, Mills MA, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001–9. https://doi.org/10.1200/JCO.2013.53.6607.
Article
CAS
Google Scholar
Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci. 2011;108(44):18032–7. https://doi.org/10.1073/pnas.1115052108.
Article
Google Scholar
Norquist BM, Harrell MI, Brady MF, et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2016;2(4):482–90. https://doi.org/10.1001/jamaoncol.2015.5495.
Article
Google Scholar
Tung N, Battelli C, Allen B, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121(1):25–33. https://doi.org/10.1002/cncr.29010.
Article
CAS
Google Scholar
Lincoln SE, Kobayashi Y, Anderson MJ, et al. A systematic comparison of traditional and multigene panel testing for hereditary breast and ovarian cancer genes in more than 1000 patients. J Mol Diagn. 2015;17(5):533–44. https://doi.org/10.1016/j.jmoldx.2015.04.009.
Article
Google Scholar
LaDuca H, Stuenkel AJ, Dolinsky JS, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med. 2014;16(11):830–7. https://doi.org/10.1038/gim.2014.40.
Article
Google Scholar
Maxwell KN, Wubbenhorst B, D’Andrea K, et al. Prevalence of mutations in a panel of breast cancer susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer. Genet Med. 2015;17(8):630–8. https://doi.org/10.1038/gim.2014.176.
Article
CAS
Google Scholar
Frank TS, Deffenbaugh AM, Reid JE, et al. Clinical Characteristics of Individuals With Germline Mutations in BRCA1 and BRCA2: Analysis of 10,000 Individuals. 11.
Saam J, Burbidge L, Bowles K. Decline in rate of BRCA1/2 variants of uncertain significance: 2002–2008. Poster presented at: 27th Annual Education Conference of the National Society of Genetic Counselors; 2008; Los Angeles.
Eggington J, Bowles K, Moyes K, et al. A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes. Clin Genet. 2014;86(3):229–37. https://doi.org/10.1111/cge.12315.
Article
CAS
Google Scholar
Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32. https://doi.org/10.1056/NEJMra012242.
Article
CAS
Google Scholar
Aaltonen LA, Salovaara R, Kristo P, et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med. 1998;338(21):1481–7. https://doi.org/10.1056/NEJM199805213382101.
Article
CAS
Google Scholar
Samowitz WS, Curtin K, Lin HH, et al. The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer. Gastroenterology. 2001;121(4):830–8. https://doi.org/10.1053/gast.2001.27996.
Article
CAS
Google Scholar
Ligtenberg MJL, Kuiper RP, Chan TL, et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet. 2009;41(1):112–7. https://doi.org/10.1038/ng.283.
Article
CAS
Google Scholar
Vasen HFA, Blanco I, Aktan-Collan K, et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62(6):812–23. https://doi.org/10.1136/gutjnl-2012-304356.
Article
CAS
Google Scholar
Win AK, Young JP, Lindor NM, et al. Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol. 2012;30(9):958–64. https://doi.org/10.1200/JCO.2011.39.5590.
Article
CAS
Google Scholar
Watson P, Lynch HT. The tumor spectrum in HNPCC. Anticancer Res. 1994;14(4B):1635–9.
CAS
Google Scholar
Aarnio M, Sankila R, Pukkala E, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81(2):214–8. https://doi.org/10.1002/(sici)1097-0215(19990412)81:2%3c214::aid-ijc8%3e3.0.co;2-l.
Article
CAS
Google Scholar
Dominguez-Valentin M, Sampson JR, Seppälä TT, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(1):15–25. https://doi.org/10.1038/s41436-019-0596-9.
Article
CAS
Google Scholar
Monahan KJ, Bradshaw N, Dolwani S, et al. Guidelines for the management of hereditary colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom Cancer Genetics Group (UKCGG). Gut. 2020;69(3):411–44. https://doi.org/10.1136/gutjnl-2019-319915.
Article
CAS
Google Scholar
Genpanel Diagnostik – Genetica AG. Accessed March 14, 2022. https://genetica-ag.ch/genpanel-diagnostik/.
DGVademecum. Accessed March 14, 2022. https://dgvademecum.ksa.ch/.
Robson ME, Bradbury AR, Arun B, et al. American society of clinical oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol. 2015;33(31):3660–7. https://doi.org/10.1200/JCO.2015.63.0996.
Article
CAS
Google Scholar
Liste der Analysen - Spital Wallis. Accessed April 6, 2022. https://www.spitalwallis.ch/gesundheitsfachpersonal/zentralinstitut-der-spitaeler/laboratorien/fachbereiche/genetik/liste-der-analysen.
Liste des panels de gènes. Accessed April 6, 2022. https://www.hug.ch/medecine-genetique/liste-panels-genes.
Universitätsspital Basel. Auftrag Lynch-Syndrom. Accessed March 14, 2022. https://www.unispital-basel.ch/fileadmin/unispitalbaselch/Lehre_Forschung/Dep_Biomedizin/Medizinische_Genetik/Labordiagnostik/Auftragsformulare/Auftrag_Lynch-Syndrom_HNPCC_18_11_2015.pdf.
SAS SAS. Swiss Accreditation Service SAS. Accessed October 30, 2022. https://www.sas.admin.ch/sas/en/home.html.
Daly MJ. gnomAD Genome Aggregation Database. Accessed October 30, 2022. https://gnomad.broadinstitute.org/.
Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–85. https://doi.org/10.1016/j.ajhg.2016.08.016.
Article
CAS
Google Scholar
Kastrinos F, Steyerberg EW, Mercado R, et al. The PREMM(1,2,6) model predicts risk of MLH1, MSH2, and MSH6 germline mutations based on cancer history. Gastroenterology. 2011;140(1):73–81. https://doi.org/10.1053/j.gastro.2010.08.021.
Article
CAS
Google Scholar
Switzerland Population and Demographics from Switzerland | - CountryReports. Accessed October 30, 2022. https://www.countryreports.org/country/Switzerland/population.htm.
O’Leary E, Iacoboni D, Holle J, et al. Expanded gene panel use for women with breast cancer: identification and intervention beyond breast cancer risk. Ann Surg Oncol. 2017;24(10):3060–6. https://doi.org/10.1245/s10434-017-5963-7.
Article
Google Scholar
Hall MJ, Forman AD, Pilarski R, Wiesner G, Giri VN. Gene panel testing for inherited cancer risk. J Natl Compr Canc Netw. 2014;12(9):1339–46. https://doi.org/10.6004/jnccn.2014.0128.
Article
Google Scholar
Desmond A, Kurian AW, Gabree M, et al. Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol. 2015;1(7):943–51. https://doi.org/10.1001/jamaoncol.2015.2690.
Article
Google Scholar
Kapoor NS, Curcio LD, Blakemore CA, et al. Multigene panel testing detects equal rates of pathogenic BRCA1/2 mutations and has a higher diagnostic yield compared to limited BRCA1/2 analysis alone in patients at risk for hereditary breast cancer. Ann Surg Oncol. 2015;22(10):3282–8. https://doi.org/10.1245/s10434-015-4754-2.
Article
Google Scholar
Doherty J, Bonadies DC, Matloff ET. Testing for hereditary breast cancer: panel or targeted testing? Experience from a clinical cancer genetics practice. J Genet Couns. 2015;24(4):683–7. https://doi.org/10.1007/s10897-014-9796-2.
Article
Google Scholar
McVean GA, Altshuler (Co-Chair) DM, Durbin (Co-Chair) RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. https://doi.org/10.1038/nature11632
Kanavy DM, McNulty SM, Jairath MK, et al. Comparative analysis of functional assay evidence use by ClinGen Variant Curation Expert Panels. Genome Med. 2019;11(1):77. https://doi.org/10.1186/s13073-019-0683-1.
Article
Google Scholar
Caswell-Jin JL, Gupta T, Hall E, et al. Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk. Genet Med. 2018;20(2):234–9. https://doi.org/10.1038/gim.2017.96.
Article
Google Scholar
Niessen RC, Berends MJW, Wu Y, et al. Identification of mismatch repair gene mutations in young patients with colorectal cancer and in patients with multiple tumours associated with hereditary non-polyposis colorectal cancer. Gut. 2006;55(12):1781–8. https://doi.org/10.1136/gut.2005.090159.
Article
CAS
Google Scholar
Woods MO, Williams P, Careen A, et al. A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat. 2007;28(7):669–73. https://doi.org/10.1002/humu.20502.
Article
CAS
Google Scholar
Niessen RC, Kleibeuker JH, Westers H, et al. PMS2 involvement in patients suspected of Lynch syndrome. Genes Chromosomes Cancer. 2009;48(4):322–9. https://doi.org/10.1002/gcc.20642.
Article
CAS
Google Scholar
Eggington JM, Burbidge LA, Roa B, et al. Current Variant of Uncertain Significance Rates in BRCA1/2 and Lynch Syndrome Testing. Poster presented at: American College of Medical Genetics and Genomics Annual Meeting; March 2012; Myriad Genetic Laboratories, Inc., 320 Wakara Way, Salt Lake City, Utah 84108, USA.