Krasinskas AM: EGFR signaling in colorectal carcinoma. Patholog Res Int. 2011, 2011: 932932.
PubMed
PubMed Central
Google Scholar
Bardelli A, Siena S: Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010, 28 (7): 1254-1261. 10.1200/JCO.2009.24.6116.
Article
CAS
PubMed
Google Scholar
Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, et al: Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012, 486 (7404): 532-536.
CAS
PubMed
PubMed Central
Google Scholar
Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, et al: K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008, 359 (17): 1757-1765. 10.1056/NEJMoa0804385.
Article
CAS
PubMed
Google Scholar
Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B: EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005, 352 (8): 786-792. 10.1056/NEJMoa044238.
Article
CAS
PubMed
Google Scholar
Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, Salido M, Gallen M, Marsters S, Tsai SP, et al: Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012, 18 (2): 221-223. 10.1038/nm.2609.
Article
CAS
PubMed
Google Scholar
Chan IS, Ginsburg GS: Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet. 2011, 12: 217-244. 10.1146/annurev-genom-082410-101446.
Article
CAS
PubMed
Google Scholar
Zhang W, Gordon M, Press OA, Rhodes K, Vallbohmer D, Yang DY, Park D, Fazzone W, Schultheis A, Sherrod AE, et al: Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics. 2006, 16 (7): 475-483. 10.1097/01.fpc.0000220562.67595.a5.
Article
PubMed
Google Scholar
Kim JC, Kim SY, Cho DH, Ha YJ, Choi EY, Kim CW, Roh SA, Kim TW, Ju H, Kim YS: Novel chemosensitive single-nucleotide polymorphism markers to targeted regimens in metastatic colorectal cancer. Clin Cancer Res. 2011, 17 (5): 1200-1209. 10.1158/1078-0432.CCR-10-1907.
Article
CAS
PubMed
Google Scholar
De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S: KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011, 12 (6): 594-603. 10.1016/S1470-2045(10)70209-6.
Article
CAS
PubMed
Google Scholar
The Cancer Genome Atlas. http://cancergenome.nih.gov/.
Gene Expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/.
Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, Zheng X, Crosslin DR, Levine D, Lumley T, et al: GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics. 2012, 28 (24): 3329-3331. 10.1093/bioinformatics/bts610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willer CJ, Li Y, Abecasis GR: METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010, 26 (17): 2190-2191. 10.1093/bioinformatics/btq340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006, 38 (8): 904-909. 10.1038/ng1847.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK: EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010, 26 (1): 139-140. 10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, Lam WK, Chiu SW, Girard L, Minna JD, et al: Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res. 2006, 12 (5): 1647-1653. 10.1158/1078-0432.CCR-05-1981.
Article
CAS
PubMed
Google Scholar
Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008, 24 (24): 2938-2939. 10.1093/bioinformatics/btn564.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baird DM: Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med. 2010, 12: e16.
Article
PubMed
Google Scholar
Kang JU, Koo SH, Kwon KC, Park JW, Kim JM: Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet. 2008, 182 (1): 1-11. 10.1016/j.cancergencyto.2007.12.004.
Article
CAS
PubMed
Google Scholar
Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA, Bojesen SE, Nordestgaard BG, Axelsson CK, Arias JI, et al: Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet. 2008, 4 (4): e1000054-10.1371/journal.pgen.1000054.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Toh L, Lau P, Wang X: Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/beta-catenin pathway in human cancer. J Biol Chem. 2012, 287 (39): 32494-32511. 10.1074/jbc.M112.368282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R: Direct activation of TERT transcription by c-MYC. Nat Genet. 1999, 21 (2): 220-224. 10.1038/6010.
Article
CAS
PubMed
Google Scholar
Yin L, Hubbard AK, Giardina C: NF-kappa B regulates transcription of the mouse telomerase catalytic subunit. J Biol Chem. 2000, 275 (47): 36671-36675. 10.1074/jbc.M007378200.
Article
CAS
PubMed
Google Scholar
Arita H, Narita Y, Fukushima S, Tateishi K, Matsushita Y, Yoshida A, Miyakita Y, Ohno M, Collins VP, Kawahara N, et al: Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol. 2013
Google Scholar
Comments
View archived comments (2)