Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histologic grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10.
Article
CAS
PubMed
Google Scholar
Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790–800.
Article
CAS
PubMed
Google Scholar
Colombo PE, Milanezi F, Weigelt B, Reis-Filho JS. Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res. 2011;13:212.
Article
PubMed
PubMed Central
Google Scholar
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann Oncol. 2013;2013(24):2206–23.
Article
Google Scholar
Fumagalli D, Andre F, Piccart-Gebhart MJ, Sotiriou C, Desmedt C. Molecular biology in breast cancer: should molecular classifiers be assessed by conventional tools or by gene expression arrays? Crit Rev Oncol Hematol. 2012;84:58–69.
Article
Google Scholar
Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, et al. Strong time dependance of the 76- gene prognostic signature for node-negative brest cancer patients in the transbig multicenter independant validation series. Clin Cancer Res. 2007;13(11):3207–14.
Article
CAS
PubMed
Google Scholar
Perou CM, Sorlie T, Eisen MB, van de Rijn M, SS J r, Rees CA, et al. Molecular portraitsof human breast tumours. Nature. 2000;406:747–52.
Article
CAS
PubMed
Google Scholar
Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, et al. The molecular portraits of breast tumors are conserved acrossmicroarray platforms. BMC Genomics. 2006;7:96.
Article
PubMed
PubMed Central
Google Scholar
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression datasets. Proc Natl Acad Sci U S A. 2003;100:8418–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes associated withbreast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14:5158–65.
Article
CAS
PubMed
Google Scholar
Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 2008;10:R65.
Article
PubMed
PubMed Central
Google Scholar
Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 2006;66:10292–301.
Article
CAS
PubMed
Google Scholar
Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–72.
Article
CAS
PubMed
Google Scholar
Van’t Veer LJ, Dai H, van deVijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinicaloutcome of breast cancer. Nature. 2002;415:530–6.
Article
Google Scholar
van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.
Article
PubMed
Google Scholar
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365:671–9.
Article
CAS
PubMed
Google Scholar
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node negative breast cancer. N Engl J Med. 2004;351:2817–26.
Article
CAS
PubMed
Google Scholar
Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, et al. A two gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5:607–16.
Article
CAS
PubMed
Google Scholar
Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.
Article
CAS
PubMed
Google Scholar
Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol. 2007;8:R157.
Article
PubMed
PubMed Central
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning. 2002;46:389–422.
Article
Google Scholar
Kononenko I. Estimating attributes: analysis and extensions of RELIEF. Proc European Conf Machine Learning. 1994;784:171–82.
Google Scholar
Li Y, Lu BL. Feature selection based on loss-margin of nearest neighbor classification. Pattern Recognit. 2009;42:1914–21.
Article
Google Scholar
Thawonmas R, Abe S. A novel approach to feature selection based on analysis of class region. IEEE Trans Syst Man and Cybern. 1997;27:196–207.
Article
CAS
Google Scholar
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.
Google Scholar
Kohavi R, John GH. Wrapper for feature subset selection. Artif Intell. 1997;97:273–324.
Article
Google Scholar
Hua J, Tembe W, Dougherty ER. Feature selection in the classification of high-dimension data, in: IEEE International Work shop on Genomic Signal Processing and Statistics, 2008, doi:10.1109/GENSIPS.2008.4555665.
Jin X, Xu A, Bie R, Guo P. Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. Lect Notes Comput Sci. 2006;3916:106–15.
Article
Google Scholar
Liao C, Li S, Luo Z. Gene selection using Wilcoxon rank sum test and support vector machine for cancer. Lect Notes Comput Sci. 2007;4456:57–66.
Article
Google Scholar
Biesiada J, Duch W. Feature selection for high-dimensional data—a Pearson redundancy based filter. Adv Soft Comput. 2008;45:242–9.
Article
Google Scholar
Rocchi L, Chiari L, Cappello A. Feature selection of stabile-metric parameters based on principal component analysis. Med Biol Eng Comput. 2004;42:71–9.
Article
CAS
PubMed
Google Scholar
Gheyas I, Simith L. Feature subset selection in large dimensionality domains. Pattern Recognit. 2010;43:5–13.
Article
Google Scholar
Yang J, Honavar V. Feature subset selection using a genetic algorithm. IEEE Intell Sys App. 1998;13:44–9.
Article
Google Scholar
Vieira SM, Sousa MC, Runkler TA. Ant colony optimization applied to feature selection in fuzzy classifiers. Lect Notes Comput Sci. 2007;4529:778–88.
Article
Google Scholar
Ronen M, Jacob Z. Using simulated annealing to optimize feature selection problem in marketing applications. Eur J Oper Res. 2006;171:842–58.
Article
Google Scholar
Tan F, Fu X, Wang H, Zhang Y, Bourgeois A. A hybrid feature selection approach for microarray gene expression data. Lect Notes Comput Sci. 2006;3992:678–85.
Article
Google Scholar
Yan Z, Yuan C. Ant colony optimization for feature selection in face recognition. Lect Notes Comput Sci. 2004;3072:221–6.
Article
Google Scholar
Osei-Bryson KM, Giles K, Kositanurit B. Exploration of a hybrid feature selection algorithm. J Oper Res Soc. 2004;54:790–7.
Article
Google Scholar
Mao KZ. Feature subset selection for support vector machines through discriminative pruning analysis. IEEE Trans Syst Man Cybern B Cybern. 2004;34:60–7.
Article
CAS
PubMed
Google Scholar
Zadeh LA. Fuzzy sets. Inform Control. 1965;8(3):338–53.
Article
Google Scholar
Jensen R, Shen Q. Fuzzy-rough sets assisted attribute selection. IEEE Trans Fuzzy Syst. 2007;15:73–89.
Article
Google Scholar
Kovalerchuk B, Triantaphyllou E, Ruiz JF, Clayton J. Fuzzy logic in computer-aided breast cancer diagnosis: analysis of lobulation. Artif Intell Med. 1997;11(1):75–85.
Article
CAS
PubMed
Google Scholar
Gonzalez A, Perez R. Selection of relevant features in a fuzzy genetic learning algorithms. IEEE Trans Syst Man Cybern. 2002;33:417–27.
Google Scholar
Peña-Reyes CA, Sipper M. A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med. 1999;17:131–55.
Article
PubMed
Google Scholar
Lee H-M, Chen C-M, Chen J-M, Jou Y-L. An efficient fuzzy classifier with feature selection based on fuzzy entropy. IEEE Trans Syst Man Cybern. 2001;31:426–32.
Article
CAS
Google Scholar
Li Y, Wu ZF. Fuzzy feature selection based on min-max learning rule and extension matrix. Pattern Recognit. 2008;41:217–26.
Article
CAS
Google Scholar
Marcelloni F. Feature selection based on a modified fuzzy C-means algorithm with supervision. Info Sci. 2003;151:201–26.
Article
Google Scholar
Rezaee MR, Goedhart B, Lelieveldt BPF, Reiber JHC. Fuzzy feature selection. Pattern Recognit. 1999;32:2011–9.
Article
Google Scholar
Nascimento S. Fuzzy Clustering via Proportional Membership Mode Amsterdam. The Netherlands: IOS Press; 2005. Frontiers in Artificial Intelligence and Applications.
Google Scholar
Haibe-Kains B, Desmedt C, Rothé F, Piccart M, Sotiriou C, Bontempi G. A fuzzy gene expression-based computational approach improves breast cancer prognostication. Genome Biol. 2010;11:R18.
Article
PubMed
PubMed Central
Google Scholar
Javier Lopez F, Cuadros M, Blanco A, Concha A. Unveiling Fuzzy Associations between Breast Cancer Prognostic Factors and Gene Expression Data, DEXA’09. 20th International Workshop on Database and Expert Systems Application. 2009 pp.338-342.
Hedjazi L, Aguilar-Martin J, Le Lann M-V, Kempowsky T, et al. Towards a unified principle for reasoning about heterogeneous data: a fuzzy logic framework. Int J Unc Fuzz Knowl Based Syst. 2012;20:281–302.
Article
Google Scholar
Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.
Article
Google Scholar
McGovern SL, Qi Y, Pusztai L, Symmans WF, Buchholz TA. Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res. 2012;14:R72. PubMed: 22559056.
Article
PubMed
PubMed Central
Google Scholar
Jain AK, Murty MN, Flynn PJ. Data clustering: a review. J ACM Comput Surv. 1999;31(3):264–323.
Article
Google Scholar
Dubois D, Prade H. The three semantics of fuzzy sets. Fuzzy Sets Syst. 1997;90:141–50.
Article
Google Scholar
Medasani S, Kim J. An overview of membership function generation techniques for pattern recognition. Int J Approx Reason. 1998;19:391–417.
Article
Google Scholar
Hedjazi L, Aguilar-Martin J, Le Lann M-V. Similarity-margin based feature selection for symbolic interval data. Pattern Recognit Lett. 2011;32(4):578–85.
Article
Google Scholar
Hedjazi L, Aguilar-Martin J, Le Lann M-V, Kempowsky T. Membership-Margin based Feature Selection for Mixed-Type and High-Dimensional Data. 2013. submitted to: Information Sciences 2013 Manuscript Number: INS-D-12-491.
Google Scholar
Aguilar J, Lopez R, De M. The process of classification and learning the meaning of linguistic descriptions of concepts. In: Gupta MM, Sanchez E, editors. Approximate reasoning in decision analysis. Amsterdam: North Holland Publishing Company; 1982. p. 165–75.
Google Scholar
Aguilar Martin J, Martin M, Piera N. Conceptual connectivity analysis by means of fuzzy partitions. Uncertainty in knowledge bases. Lect Notes Comput Sci. 1991;521:165–72.
Article
Google Scholar
Hedjazi L. A Tool for cancer diagnosis/prognosis based on information extracted from clinical databases and microarray analysis. PhD manuscript, Toulouse, France, December 8th 2011. http://tel.archives-ouvertes.fr/tel-00657959/fr/.
Aguado JC, Aguilar-Martin J. A mixed qualitative-quantitative self-learning classification technique applied to diagnosis. QR’99 The Thirteenth International Workshop on Qualitative Reasoning. Chris Price. 1999, 124–128.
Wessels LFA, Reinders MJT, Hart AAM, Veenman CJ, Dai H, He YD, et al. A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics. 2005;21:3755–62.
Article
CAS
PubMed
Google Scholar