World Health Organization. Global status report on noncommunicable diseases. 2014;2014:176.
Google Scholar
Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circ Res. 2013;112:1365–79.
Article
CAS
PubMed
Google Scholar
Doris PA. Hypertension genetics, single nucleotide polymorphisms, and the common disease:common variant hypothesis. Hypertension. 2002;39:323–31.
Article
CAS
PubMed
Google Scholar
Franceschini N, Le T. Genetics of hypertension: discoveries from the bench to human populations. Am. J. Physiol. - Ren Physiol. 2013;306:F1–11.
Article
Google Scholar
Popejoy A, Fullerton S. Genomics is failing on diversity. Nature. 2016;538:161–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter L, Norris S, Pettifor J, Yach D, Cameron N. Cohort profile: Mandela’s children: the 1990 Birth to Twenty study in South Africa. Int J Epidemiol. 2007;36:504–11.
Article
PubMed
PubMed Central
Google Scholar
Kagura J, Adair LS, Musa MG, Pettifor JM, Norris SA. Blood pressure tracking in urban black south African children: Birth to Twenty cohort. BMC Pediatr. 2015;15:1–7.
Article
Google Scholar
Miller SA, Dykes DD, Polesky HFA. Simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012/08/10. 2012;8:e1002793.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Chang C. PLINK 1.9 [Internet]. 2014. Available from: https://www.cog-genomics.org/plink2
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.
Article
PubMed
PubMed Central
Google Scholar
Buchmann R, Hazelhurst S. Genesis manual [internet]. 2014. Available from: http://www.bioinf.wits.ac.za/software/genesis/Genesis.pdf
Google Scholar
Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc. 2010;5:1564–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris JA, Randall JC, Maller JB, Barrett JC. Evoker: a visualization tool for genotype intensity data. Bioinformatics. 2010;26:1786–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria; 2009.
Arking DE, Pfeufer A, Post W, Kao WHL, Newton-Cheh C, Ikeda M, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38:644–51.
Article
CAS
PubMed
Google Scholar
Faruque MU, Chen G, Doumatey A, Huang H, Zhou J, Dunston GM, et al. Association of ATP1B1, RGS5 and SELE polymorphisms with hypertension and blood pressure in African-Americans. J Hypertens. 2011;29:1906–12.
Article
CAS
PubMed
Google Scholar
Melikian N, Seddon MD, Casadei B, Chowienczyk PJ, Shah AM. Neuronal nitric oxide synthase and human vascular regulation. Trends Cardiovasc Med. 2009:256–62.
Hermann M, Flammer A, Lüscher TF. Nitric oxide in hypertension. J Clin Hypertens. 2006;8:17–29.
Article
CAS
Google Scholar
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012:829–37.
C-J L, Hao G, Nikiforova N, Larsen HE, Liu K, Crabtree MJ, et al. CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension. Hypertension. 2015;65:1288–97.
Article
Google Scholar
Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE consortium. PLoS Genet. 2011;7:e1002193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46:543–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mozaffarian D, Kabagambe EK, Johnson CO, Lemaitre RN, Manichaikul A, Sun Q, et al. Genetic loci associated with circulating phospholipid trans fatty acids: a meta-analysis of genome-wide association studies from the CHARGE consortium. Am J Clin Nutr. 2015;101:398–406.
Article
CAS
PubMed
Google Scholar
Tintle NL, Pottala JV, Lacey S, Ramachandran V, Westra J, Rogers A, et al. A genome-wide association study of fourteen red blood cell fatty acids in the Framingham heart study. Prostaglandins. Leukot Essent Fat Acids. 2015;94:65–72.
Article
CAS
Google Scholar
Leslie R, O’Donnell CJ, Johnson ADGRASP. Analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database. Bioinformatics. 2014;30
Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics. 2016;32:3207–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011/09/13. 2011;478:103–109.
Suchindran S, Rivedal D, Guyton JR, Milledge T, Gao X, Benjamin A, et al. Genome-wide association study of Lp-PLA2 activity and mass in the framingham heart study. PLoS Genet. 2010;6
Grallert H, Dupuis J, Bis JC, Dehghan A, Barbalic M, Baumert J, et al. Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J. 2012;33:238–51.
Article
CAS
PubMed
Google Scholar
Kettunen J, Tukiainen T, Sarin A-P, Ortega-Alonso A, Tikkanen E, Lyytikäinen L-P, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44:269–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hiura Y, Tabara Y, Kokubo Y, Okamura T, Miki T, Tomoike H, et al. A genome-wide association study of hypertension-related phenotypes in a Japanese population. Circ J. 2010;74:2353–9.
Article
PubMed
Google Scholar
Zhu X, Young JH, Fox E, Keating BJ, Franceschini N, Kang S, et al. Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium. Hum. Mol. Genet. 2011/03/23. 2011;20:2285–2295.
Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK, et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the candidate Gene Association resource study. Hum Mol Genet. 2011;20:2273–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomaszewski M, Debiec R, Braund PS, Nelson CP, Hardwick R, Christofidou P, et al. Genetic architecture of ambulatory blood pressure in the general population: insights from cardiovascular gene-centric array. Hypertension. 2010;56:1069–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang HC, Liang YJ, Chen JW, Chiang KM, Chung CM, Ho HY, et al. Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as hypertension susceptibility genes in Han Chinese with a genome-wide gene-based association study. PLoS One. 2012;7
Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.
Article
CAS
Google Scholar
Liang J, Le TH, Edwards DRV, Tayo BO, Gaulton KJ, Smith JA, et al. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations. PLoS Genet. 2017;13:e1006728.
Article
PubMed
PubMed Central
Google Scholar
Mattei J, Parnell L, Lai C, Garcia-Bailo B, Adiconis X, Shen J, et al. Disparities in allele frequencies and population differentiation for 101 disease-associated single nucleotide polymorphisms between Puerto Ricans and non-Hispanic whites. BMC Genet. 2009;10
Teo Y-Y, Small KS, Kwiatkowski DP. Methodological challenges of genome-wide association analysis in Africa. Nat Rev Genet. 2010;11:149–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buyske S, Wu Y, Carty CL, Cheng I, Assimes TL, Dumitrescu L, et al. Evaluation of the metabochip genotyping array in African Americans and implications for fine mapping of GWAS-identified loci: the PAGE study. PLoS One. 2012;7:e35651.
Article
CAS
PubMed
PubMed Central
Google Scholar
H3Africa Consortium. Enabling the genomic revolution in Africa. Science (80-. ). 2014;344:1346–8.
Ramsay M, Crowther N, Tambo E, Agongo G, Baloyi V, Dikotope S, et al. H3Africa AWI-gen collaborative Centre: a resource to study the interplay between genomic and environmental risk factors for cardiometabolic diseases in four sub-Saharan African countries. Glob. Heal. Epidemiol. Genomics. 2016;1:1–13.
Article
Google Scholar
Sofer T, Wong Q, Hartwig F, Taylor K, Warren H, Evangelou E, et al. Genome-wide association study of blood pressure traits by Hispanic/Latino background: the hispanic community health study/study of Latinos. Sci. Rep. 2107;7