Farinola N, Piller NB. CYP2A6 polymorphisms: is there a role for pharmacogenomics in preventing coumarin-induced hepatotoxicity in lymphedema patients? Pharmacogenomics. 2007;8(12):151–8.
Article
CAS
PubMed
Google Scholar
Poveshchenko AF, Nimaev VV, Lubarsky MS, Konenkov VI. Medical and genetical aspects of lymphedema. Med Genet. 2010;9(9):3–9.
Google Scholar
Szuba A, Rockson SG. Lymphedema: classification, diagnosis and therapy. Vasc Med. 1998;3(2):145–56.
Article
CAS
PubMed
Google Scholar
Mendola A, Schlögel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastré E, et al. Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema. Mol Syndromol. 2013;4(6):257–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124(3):898–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta A, Moore JA. Lymphedema. JAMA Oncol. 2018;4(5):755.
Article
PubMed
Google Scholar
Leung G, Baggott C, West C, Elboim C, Paul SM, Cooper BA, et al. Cytokine candidate genes predict the development of secondary lymphedema following breast cancer surgery. Lymphat Res Biol. 2014;12(1):10–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miaskowski C, Dodd M, Paul SM, West C, Hamolsky D, Abrams G, et al. Lymphatic and angiogenic candidate genes predict the development of secondary lymphedema following breast cancer surgery. PLoS One. 2013;8(4):e60164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaitelman SF, Cromwell KD, Rasmussen JC, Stout NL, Armer JM, Lasinski BB, et al. Recent progress in cancer-related lymphedema treatment and prevention. CA Cancer J Clin. 2015;65(1):55.
Article
PubMed
Google Scholar
Olszewski WL. Pathophysiological aspects of lymphedema of human limbs: I. Lymph protein composition. Lymphat Res Biol. 2003;1(3):235–43.
Article
CAS
PubMed
Google Scholar
Tian W, Rockson SG, Jiang X, Kim J, Begaye A, Shuffle EM, Tu AB, Cribb M, Nepiyushchikh Z, Feroze AH, Zamanian RT. Leukotriene B4 antagonism ameliorates experimental lymphedema. Sci Transl Med. 2017;9(389):eaal3920.
Article
PubMed
Google Scholar
Kerr J, Wyllie A, Currie A. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JF, Zhang X, Groopman JE. Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J Biol Chem. 2004;279(26):27088–97.
Article
CAS
PubMed
Google Scholar
Ogunbiyi S, Chinien G, Field D, Humphries J, Burand K, Sawyer B, et al. Smith, for the London lymphedema consortium a. Molecular characterization of dermal lymphatic endothelial cells from primary lymphedema skin. Lymphat Res Biol. 2011;9(1):19–30.
Article
CAS
PubMed
Google Scholar
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(suppl_2):W305–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet. 2012;13(8):523.
Article
CAS
PubMed
Google Scholar
Guney E, Oliva B. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization. PLoS One. 2012;7(9):e43557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tranchevent LC, Ardeshirdavani A, ElShal S, Alcaide D, Aerts J, Auboeuf D, et al. Candidate gene prioritization with Endeavour. Nucleic Acids Res. 2016;44(W1):W117–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saik OV, Demenkov PS, Ivanisenko TV, Bragina EY, Freidin MB, Goncharova IA, et al. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med Genet. 2018;11(1):15.
Google Scholar
Yankina MA, Saik OV, Demenkov PS, Khusnutdinova EK, Rogaev EI, Lavrik IN, et al. Analysis of the interactions of neuronal apoptosis genes in the associative gene network of Parkinson's disease. Vavilovskii Zhurnal Genetiki I SelektsII. 2018;22(1):153–60.
Google Scholar
Demenkov PS, Ivanisenko TV, Kolchanov NA, Ivanisenko VA. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2012;11(3, 4):149–61.
CAS
Google Scholar
Ivanisenko VA, Saik OV, Ivanisenko NV, Tiys ES, Ivanisenko TV, Demenkov PS, et al. ANDSystem: an associative network discovery system for automated literature mining in the field of biology. BMC Syst Biol. 2015;9(2):S2.
Article
PubMed
PubMed Central
Google Scholar
Glotov AS, Tiys ES, Vashukova ES, Pakin VS, Demenkov PS, Saik OV, et al. Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Syst Biol. 2015;9(2):S4.
Article
PubMed
PubMed Central
Google Scholar
Bragina EY, Tiys ES, Freidin MB, Koneva LA, Demenkov PS, Ivanisenko VA, et al. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7–8):457–65.
Article
CAS
PubMed
Google Scholar
Mattingly CJ, Rosenstein MC, Colby GT, Forrest JN Jr, Boyer JL. The comparative Toxicogenomics database (CTD): a resource for comparative toxicological studies. J Exp Zool A Comp Exp Biol. 2006;305(9):689–92.
Article
CAS
PubMed
Google Scholar
Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2016;45(D1):D877–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016;45(D1):D353–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, et al. The human phenotype ontology in 2017. Nucleic Acids Res. 2016;45(D1):D865–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016;45(D1):D833-D839.
Usmonov DB, Saik OV, Nimaev VV. The possibilities of bioinformatic analysis in the study of the pathogenesis of lymphatic dysplasia: Engineering, Computer and Information Sciences (SIBIRCON). 2017 International multi-conference on 2017 Sep 18. Hoboken: Wiley-IEEE Press; 2017. p. 512–4.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44.
Article
CAS
Google Scholar
Hagberg A, Swart P, S Chult D. Exploring network structure, dynamics, and function using NetworkX. Los Alamos: Los Alamos National Lab.(LANL); 2008. p. 1–6.
Google Scholar
Oliphant TE. Python for scientific computing. Comput Sci Eng. 2007;9(3):9–12.
Article
Google Scholar
Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO hub, web presence working group. AmiGO: online access to ontology and annotation data. Bioinformatics. 2008;25(2):288–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feinstein AR. The pre-therapeutic classification of co-morbidity in chronic disease. J Chronic Dis. 1970;23(7):455–68.
Article
CAS
PubMed
Google Scholar
Puzyrev VP. Genetic bases of human comorbidity. Russ J Genet. 2015;51(4):408–17.
Article
CAS
Google Scholar
Spearman C. ‘Footrule’for measuring correlation. Br J Psychol 1904–1920. 1906;2(1):89–108.
Article
Google Scholar
Radua J, Mataix-Cols D. Meta-analytic methods for neuroimaging data explained. Biology of mood & anxiety disorders. 2012;2(1):6.
Article
Google Scholar
Tabibiazar R, Cheung L, Han J, Swanson J, Beilhack A, An A, et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med. 2006;3(7):e254.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saito Y, Nakagami H, Kaneda Y, Morishita R. Lymphedema and therapeutic lymphangiogenesis. Biomed Res Int. 2013;2013(804675):1–6.
Article
CAS
Google Scholar
Yoon YS, Murayama T, Gravereaux E, Tkebuchava T, Silver M, Curry C, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. 2003;111(5):717–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coso S, Zeng Y, Sooraj D, Williams ED. Conserved signaling through vascular endothelial growth (VEGF) receptor family members in murine lymphatic endothelial cells. Exp Cell Res. 2011;317(17):2397–407.
Article
CAS
PubMed
Google Scholar
Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2011;119(5):1283–91.
Article
PubMed
CAS
Google Scholar
Newman B, Lose F, Kedda MA, Francois M, Ferguson K, Janda M, et al. Possible genetic predisposition to lymphedema after breast cancer. Lymphat Res Biol. 2012;10(1):2–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenssen TK, Lægreid A, Komorowski J, Hovig E. A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 2001;28(1):21.
CAS
PubMed
Google Scholar
Liu Z, Qi L, Li Y, Zhao X, Sun B. VEGFR2 regulates endothelial differentiation of colon cancer cells. BMC Cancer. 2017;17(1):593.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ou JM, Yu ZY, Qiu MK, Dai YX, Dong Q, Shen J, et al. Knockdown of VEGFR2 inhibits proliferation and induces apoptosis in hemangioma-derived endothelial cells. Eur J Histochem. 2014;58(1):2263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Qiao Y, Hu C, Liu L, Zhou L, Liu B, et al. VEGFR2 inhibition by RNA interference affects cell proliferation, migration, invasion, and response to radiation in Calu-1 cells. Clin Transl Oncol. 2016;18(2):212–9.
Article
CAS
PubMed
Google Scholar
Gaengel K, Niaudet C, Hagikura K, Laviña B, Muhl L, Hofmann JJ, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell. 2012;23(3):587–99.
Article
CAS
PubMed
Google Scholar
van Tuyl M, Groenman F, Wang J, Kuliszewski M, Liu J, Tibboel D, et al. Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. Dev Biol. 2007;303(2):514–26.
Article
PubMed
CAS
Google Scholar
Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A, et al. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J. 2009;23(5):1490–502.
Article
CAS
PubMed
Google Scholar
Jang DH, Song DH, Chang EJ, Jeon JY. Anti-inflammatory and lymphangiogenetic effects of low-level laser therapy on lymphedema in an experimental mouse tail model. Lasers Med Sci. 2016;31(2):289–96.
Article
PubMed
Google Scholar
Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenbacz F, Prevo R, et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res. 2001;88(6):623–9.
Article
CAS
PubMed
Google Scholar
Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J. 2000;14(13):2087–96.
Article
CAS
PubMed
Google Scholar
Achen MG, Roufail S, Domagala T, Catimel B, Nice EC, Geleick DM, et al. Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. Eur J Biochem. 2000;267(9):2505–15.
Article
CAS
PubMed
Google Scholar
Meyer RD, Sacks DB, Rahimi N. IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One. 2008;3(12):e3848.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shin M, Male I, Beane TJ, Villefranc JA, Kok FO, Zhu LJ, Lawson ND. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development. 2016;143(20):3785-3795.
Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, Van Impel A, Stacker SA, Achen MG, Schulte-Merker S. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development. 2014;141(6):1239-49.
Gousopoulos E, Proulx ST, Bachmann SB, Dieterich LC, Scholl J, Karaman S, et al. An important role of VEGF-C in promoting lymphedema development. J Investig Dermatol. 2017;137(9):1995–2004.
Article
CAS
PubMed
Google Scholar
Fastré E, Lanteigne LE, Helaers R, Giacalone G, Revencu N, Dionyssiou D, et al. Splice-site mutations in VEGFC cause loss of function and nonne-Milroy-like primary lymphedema. Clin Genet. 2018;94(1):179–81.
Article
PubMed
CAS
Google Scholar
Saaristo A, Veikkola T, Tammela T, Enholm B, Karkkainen MJ, Pajusola K, et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J Exp Med. 2002;196(6):719–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizuno S, Yamada Y, Yamada K, Nomura N, Wakamatsu N. Clinical variability in a Japanese hereditary lymphedema type I family with an FLT4 mutation. Congenit Anom. 2005;45(2):59–61.
Article
CAS
Google Scholar
Hanson HL, Wilson MJ, Short JP, Chioza BA, Crosby AH, Nash RM, et al. Germline CBL mutation associated with a Noonan-like syndrome with primary lymphedema and teratoma associated with acquired uniparental isodisomy of chromosome 11q23. Am J Med Genet A. 2014;164(4):1003–9.
Article
CAS
Google Scholar
Fink AM, Kaltenegger I, Schneider B, Fruhauf J, Jurecka W, Steiner A. Serum level of VEGF-D in patients with primary lymphedema. Lymphology. 2004;37(4):185–9.
CAS
PubMed
Google Scholar
Tang C, Luo D, Yang H, Wang Q, Zhang R, Liu G, et al. Expression of SHP2 and related markers in non–small cell lung cancer: a tissue microarray study of 80 cases. Appl Immunohistochem Mol Morphol. 2013;21(5):386–94.
Article
CAS
PubMed
Google Scholar
Yeang CH, Ma GC, Shih JC, Yang YS, Chen CP, Chang SP, et al. Genome-wide gene expression analysis implicates the immune response and lymphangiogenesis in the pathogenesis of fetal chylothorax. PLoS One. 2012;7(4):e34901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sulpice E, Ding S, Muscatelli-Groux B, Bergé M, Han ZC, Plouet J, et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biol Cell. 2009;101(9):525–39.
Article
CAS
PubMed
Google Scholar
Finegold DN, Schacht V, Kimak MA, Lawrence EC, Foeldi E, Karlsson JM, et al. HGF and MET mutations in primary and secondary lymphedema. Lymphat Res Biol. 2008;6(2):65–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michelini S, Vettori A, Maltese PE, Cardone M, Bruson A, Fiorentino A, et al. Genetic screening in a large cohort of italian patients affected by primary lymphedema using a next generation sequencing (NGS) approach. Lymphology. 2016;49(2):57–72.
CAS
PubMed
Google Scholar
Saito Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H, et al. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation. 2006;114(11):1177–84.
Article
CAS
PubMed
Google Scholar
Lee CY, Kang JY, Lim S, Ham O, Chang W, Jang DH. Hypoxic conditioned medium from mesenchymal stem cells promotes lymphangiogenesis by regulation of mitochondrial-related proteins. Stem Cell Res Ther. 2016;7(1):38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Popa C, Netea MG, Van Riel PL, Van Der Meer JW, Stalenhoef AF. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007;48(4):751–62.
Article
CAS
PubMed
Google Scholar
Tomita N, Morishita R, Tomita S, Kaneda Y, Higaki J, Ogihara T, et al. Inhibition of TNF-α, induced cytokine and adhesion molecule. Nephron Exp Nephrol. 2001;9(3):181–90.
Article
CAS
Google Scholar
Shimada M, Andoh A, Hata K, Tasaki K, Araki Y, Fujiyama Y, et al. IL-6 secretion by human pancreatic periacinar myofibroblasts in response to inflammatory mediators. J Immunol. 2002;168(2):861–8.
Article
CAS
PubMed
Google Scholar
Lee C, Oh JI, Park J, Choi JH, Bae EK, Lee HJ, et al. TNFα mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. Biomed Res Int. 2013;2013:580135.
PubMed
PubMed Central
Google Scholar
Cuzzone DA, Weitman ES, Albano NJ, Ghanta S, Savetsky IL, Gardenier JC, et al. IL-6 regulates adipose deposition and homeostasis in lymphedema. Am J Phys Heart Circ Phys. 2014;306(10):H1426–34.
CAS
Google Scholar
Barkauskaite V, Ek M, Popovic K, Harris HE, Wahren-Herlenius M, Nyberg F. Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus. 2007;16(10):794–802.
Article
CAS
PubMed
Google Scholar
Zampell JC, Yan A, Avraham T, Andrade V, Malliaris S, Aschen S, et al. Temporal and spatial patterns of endogenous danger signal expression after wound healing and in response to lymphedema. Am J Phys Cell Phys. 2011;300(5):C1107–21.
Article
CAS
Google Scholar
Wang B, Trayhurn P. Acute and prolonged effects of TNF-α on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch. 2006;452(4):418–27.
Article
CAS
PubMed
Google Scholar
Shimizu Y, Shibata R, Ishii M, Ohashi K, Kambara T, Uemura Y, et al. Adiponectin-mediated modulation of lymphatic vessel formation and lymphedema. J Am Heart Assoc. 2013;2(5):e000438.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mariño E, Cardier JE. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-α and Fas (CD95). Cytokine. 2003;22(5):142–8.
Article
PubMed
CAS
Google Scholar
Lejeune FJ, Rüegg C. Recombinant human tumor necrosis factor: an efficient agent for cancer treatment. Bull Cancer. 2006;93(8):10090–100.
Google Scholar
Acquavella N, Quiroga MF, Wittig O, Cardier JE. Effect of simvastatin on endothelial cell apoptosis mediated by Fas and TNF-α. Cytokine. 2010;49(1):45–50.
Article
CAS
PubMed
Google Scholar
Foldi E, Sauerwald A, Hennig B. Effect of complex decongestive physiotherapy on gene expression for the inflammatory response in peripheral lymphedema. Lymphology. 2000;33(1):19–23.
CAS
PubMed
Google Scholar
Ji RC. Lymphatic endothelial cells, inflammatory lymphangiogenesis, and prospective players. Curr Med Chem. 2007;14(22):2359–68.
Article
CAS
PubMed
Google Scholar
Anuradha R, George PJ, Kumar NP, Fay MP, Kumaraswami V, Nutman TB, et al. Circulating microbial products and acute phase proteins as markers of pathogenesis in lymphatic filarial disease. PLoS Pathog. 2012;8(6):e1002749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong HJ, Roh K, Kim G, Kim Y, Lee J, Lee M, et al. Hyaluronidase treatment of acute lymphedema in a mouse tail model. Lymphology. 2013;46(4):160–72.
CAS
PubMed
Google Scholar
Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994;8(16):1897–909.
Article
CAS
PubMed
Google Scholar
Hu HT, Huang YH, Chang YA, Lee CK, Jiang MJ, Wu LW. Tie2-R849W mutant in venous malformations chronically activates a functional STAT1 to modulate gene expression. J Investig Dermatol. 2008;128(9):2325–33.
Article
CAS
PubMed
Google Scholar
Frigerio A, Stevenson DA, Grimmer JF. The genetics of vascular anomalies. Curr Opin Otolaryngol Head Neck Surg. 2012;20(6):527–32.
Article
PubMed
Google Scholar
Yadav P, De Castro DK, Waner M, Meyer L, Fay A. Vascular anomalies of the head and neck: a review of genetics. Semin Ophthalmol. 2013;28(5–6):257–66.
Article
PubMed
Google Scholar
Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A, Sung HK, et al. A lymphatic defect causes ocular hypertension and glaucoma in mice. J Clin Invest. 2014;124(10):4320–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tavian D, Missaglia S, Maltese PE, Michelini S, Fiorentino A, Ricci M, et al. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function. Oncotarget. 2016;7(34):54228.
Article
PubMed
PubMed Central
Google Scholar
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, et al. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 2012;41(D1):D1228–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L. Human protein reference database—2009 update. Nucleic Acids Res. 2008;37(suppl_1):D767–72.
PubMed
PubMed Central
Google Scholar
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34(suppl_1):D535–9.
Article
CAS
PubMed
Google Scholar
Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr. 2010;169(11):1403–7.
Article
PubMed
Google Scholar
Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochem Biophys Res Commun. 2007;362(3):550–3.
Article
CAS
PubMed
Google Scholar
Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123(8):3600–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diebold I, Hennigs JK, Miyagawa K, Li CG, Nickel NP, Kaschwich M, et al. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. Cell Metab. 2015;21(4):596–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JD, Kim J. Alk3/Alk3b and Smad5 mediate BMP signaling during lymphatic development in zebrafish. Mol Cells. 2014;37(3):270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng P, Cai S, Zhang JN, Yi FM, Jiang WM, Wu JB. Effects of siRNA targeting BMPR-II on the biological activities of human liver cancer cells and its mechanism. Cancer Cell Int. 2014;14(1):55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soon E, Crosby A, Southwood M, Yang P, Tajsic T, Toshner M, et al. Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2015;192(7):859–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye L, Lewis-Russell JM, Davies G, Sanders AJ, Kynaston H, Jiang WG. Hepatocyte growth factor up-regulates the expression of the bone morphogenetic protein (BMP) receptors, BMPR-IB and BMPR-II, in human prostate cancer cells. Int J Oncol. 2007;30(2):521–9.
CAS
PubMed
Google Scholar
Saito Y, Nakagami H, Morishita R. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. J Vasc Surg. 2007;45(3):637.
Article
Google Scholar
Butler MG, Dagenais SL, Garcia-Perez JL, Brouillard P, Vikkula M, Strouse P, et al. Microcephaly, intellectual impairment, bilateral vesicoureteral reflux, distichiasis, and glomuvenous malformations associated with a 16q24. 3 contiguous gene deletion and a Glomulin mutation. Am J Med Genet A. 2012;158(4):839–49.
Article
CAS
Google Scholar
Ye Y, Vattai A, Zhang X, Zhu J, Thaler CJ, Mahner S, et al. Role of plasminogen activator inhibitor type 1 in pathologies of female reproductive diseases. Int J Mol Sci. 2017;18(8):1651.
Article
PubMed Central
CAS
Google Scholar
Chen R, Yan J, Liu P, Wang Z, Wang C. Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: the roles of PAI-1 and obesity on stroke. Metab Brain Dis. 2017;32(3):667–73.
Article
CAS
PubMed
Google Scholar
Yao H, He G, Chen C, Yan S, Lu L, Song L, et al. PAI1: a novel PP1-interacting protein that mediates human plasma's anti-apoptotic effect in endothelial cells. J Cell Mol Med. 2017;21(9):2068–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eljuga D, Razumovic JJ, Bulic K, Petrovecki M, Draca N, Bulic SO. Prognostic importance of PAI-1 in node negative breast cancer patients—results after 10 years of follow up. Pathol Res Pract. 2011;207(5):290–4.
Article
CAS
PubMed
Google Scholar
Dhanda J, Triantafyllou A, Liloglou T, Kalirai H, Lloyd B, Hanlon R, et al. SERPINE1 and SMA expression at the invasive front predict extracapsular spread and survival in oral squamous cell carcinoma. Br J Cancer. 2014;111(11):2114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang YL, Chen HM, Pu HW, Ma WJ, Li XM, et al. Expression of Bmi-1 and PAI-1 in esophageal squamous cell carcinoma. World J Gastroenterol: WJG. 2014;20(18):5533.
Article
PubMed
Google Scholar
Sang Y, Chen MY, Luo D, Zhang RH, Wang L, Li M, et al. TEL2 suppresses metastasis by down-regulating SERPINE1 in nasopharyngeal carcinoma. Oncotarget. 2015;6(30):29240.
Article
PubMed
PubMed Central
Google Scholar
Umemura K, Ishioka SI, Endo T, Ezaka Y, Takahashi M, Saito T. Roles of microRNA-34a in the pathogenesis of placenta accreta. J Obstet Gynaecol Res. 2013;39(1):67–74.
Article
PubMed
CAS
Google Scholar
Imagawa S, Fujii S, Dong J, Furumoto T, Kaneko T, Zaman T, et al. Hepatocyte growth factor regulates E box–dependent plasminogen activator inhibitor type 1 gene expression in HepG2 liver cells. Arterioscler Thromb Vasc Biol. 2006;26(10):2407–13.
Article
CAS
PubMed
Google Scholar
Nomura S, Maeda Y, Ishii K, Katayama Y, Yagi H, Fujishima N, et al. Relationship between HMGB1 and PAI-1 after allogeneic hematopoietic stem cell transplantation. J Blood Med. 2016;7:1–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nomura S, Taniura T, Shouzu A, Omoto S, Inami N, Fujita S, et al. Effects of pitavastatin on plasminogen activator inhibitor-1 in hyperlipidemic patients. Int J General Med. 2012;5:535.
Article
CAS
Google Scholar
Hedrich CM, Bream JH. Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res. 2010;47(1–3):185–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Y, Liu W, Ji G, Dai Y. The essential role of p38 MAPK in mediating the interplay of oxLDL and IL-10 in regulating endothelial cell apoptosis. Eur J Cell Biol. 2013;92(4–5):150–9.
Article
CAS
PubMed
Google Scholar
Wang ZQ, Bapat AS, Rayanade RJ, Dagtas AS, Hoffmann MK. Interleukin-10 induces macrophage apoptosis and expression of CD16 (FcγRIII) whose engagement blocks the cell death programme and facilitates differentiation. Immunology. 2001;102(3):331–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baroni A, Buommino E, Piccolo V, Chessa MA, Russo T, Cozza V, et al. Alterations of skin innate immunity in lymphedematous limbs: correlations with opportunistic diseases. Clin Dermatol. 2014;32(5):592–8.
Article
PubMed
Google Scholar
Kimura T, Sugaya M, Blauvelt A, Okochi H, Sato S. Delayed wound healing due to increased interleukin-10 expression in mice with lymphatic dysfunction. J Leukoc Biol. 2013;94(1):137–45.
Article
CAS
PubMed
Google Scholar
Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, et al. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 2004;109(17):2046–9.
Article
CAS
PubMed
Google Scholar
Warzecha Z, Dembiński A, Ceranowicz P, Konturek SJ, Tomaszewska R, Stachura J, et al. Inhibition of cyclooxygenase-2 reduces the protective effect of hepatocyte growth factor in experimental pancreatitis. Eur J Pharmacol. 2004;486(1):107–19.
Article
CAS
PubMed
Google Scholar
Chen PM, Liu KJ, Hsu PJ, Wei CF, Bai CH, Ho LJ, et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2. J Leukoc Biol. 2014;96(2):295–303.
Article
PubMed
CAS
Google Scholar
Mikolajczak SA, Ma BY, Yoshida T, Yoshida R, Kelvin DJ, Ochi A. The modulation of CD40 ligand signaling by transmembrane CD28 splice variant in human T cells. J Exp Med. 2004;199(7):1025–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blotta MH, Marshall JD, DeKruyff RH, Umetsu DT. Cross-linking of the CD40 ligand on human CD4+ T lymphocytes generates a costimulatory signal that up-regulates IL-4 synthesis. J Immunol. 1996;156(9):3133–40.
CAS
PubMed
Google Scholar
Wu CF, Huang FD, Sui RF, Sun JX. Preeclampsia serum upregulates CD40/CD40L expression and induces apoptosis in human umbilical cord endothelial cells. Reprod Biol Endocrinol. 2012;10(1):28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sommer S, Pudrith CB, Colvin CJ, Coussens PM. Mycobacterium avium subspecies paratuberculosis suppresses expression of IL-12p40 and iNOS genes induced by signalling through CD40 in bovine monocyte-derived macrophages. Vet Immunol Immunopathol. 2009;128(1–3):44–52.
Article
CAS
PubMed
Google Scholar
Ogilvie P, Paoletti S, Clark-Lewis I, Uguccioni M. Eotaxin-3 is a natural antagonist for CCR2 and exerts a repulsive effect on human monocytes. Blood. 2003;102(3):789–94.
Article
CAS
PubMed
Google Scholar
Kuna P, Reddigari SR, Rucinski D, Oppenheim JJ, Kaplan AP. Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils. J Exp Med. 1992;175(2):489–93.
Article
CAS
PubMed
Google Scholar
Liu D, Zhang XL, Yan CH, Li Y, Tian XX, Zhu N, et al. MicroRNA-495 regulates the proliferation and apoptosis of human umbilical vein endothelial cells by targeting chemokine CCL2. Thromb Res. 2015;135(1):146–54.
Article
CAS
PubMed
Google Scholar
Takenouchi T, Okamoto N, Ida S, Uehara T, Kosaki K. Further evidence of a mutation in CDC42 as a cause of a recognizable syndromic form of thrombocytopenia. Am J Med Genet A. 2016;170(4):852–5.
Article
CAS
Google Scholar
Kacerovska D, Kerl K, Michal M, Filipova H, Vrtel R, Vanecek T, et al. Giant angiofibromas in tuberous sclerosis complex: a possible role for localized lymphedema in their pathogenesis. J Am Acad Dermatol. 2012;67(6):1319–26.
Article
PubMed
Google Scholar
Navarre P, Poitras B. Lymphoedema in tuberous sclerosis: case report and review of the literature. J Pediatr Orthop. 2014;34(6):e27–32.
PubMed
Google Scholar
Neumeier M, Bauer S, Brühl H, Eisinger K, Kopp A, Abke S, et al. Adiponectin stimulates release of CCL2, −3, −4 and −5 while the surface abundance of CCR2 and −5 is simultaneously reduced in primary human monocytes. Cytokine. 2011;56(3):573–80.
Article
CAS
PubMed
Google Scholar
Deroanne CF, Hamelryckx D, Ho TG, Lambert CA, Catroux P, Lapière CM, et al. Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J Cell Sci. 2005;118(6):1173–83.
Article
CAS
PubMed
Google Scholar
Müller AM, Jun E, Conlon H, Sadiq SA. Cerebrospinal hepatocyte growth factor levels correlate negatively with disease activity in multiple sclerosis. J Neuroimmunol. 2012;251(1–2):80–6.
Article
PubMed
CAS
Google Scholar
Thomas M, Bayha C, Klein K, Müller S, Weiss TS, Schwab M, et al. The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARα-tr, autonomously regulates proliferative and pro-inflammatory genes. BMC Cancer. 2015;15(1):488.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheung CM, Vania M, Ang M, Chee SP, Li J. Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol Vis. 2012;18:830.
CAS
PubMed
PubMed Central
Google Scholar
Li S, Takeuchi F, Wang JA, Fuller C, Pacheco-Rodriguez G, Moss J, et al. MCP-1 overexpressed in tuberous sclerosis lesions acts as a paracrine factor for tumor development. J Exp Med. 2005;202(5):617–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruiz-García R, Mora S, Lozano-Sánchez G, Martínez-Lostao L, Paz-Artal E, Ruiz-Contreras J, Anel A, González-Granado LI, Moreno D, Allende LM. Decreased activation-induced cell death by EBV-transformed B cells from a patient with autoimmune lymphoproliferative syndrome caused by a novel FASLG mutation. Pediatr Res. 2015;78(6):603-8.
Schneider P, Bodmer JL, Holler N, Mattmann C, Scuderi P, Terskikh A, et al. Characterization of Fas (Apo-1, CD95)-fas ligand interaction. J Biol Chem. 1997;272(30):18827–33.
Article
CAS
PubMed
Google Scholar
Kokkonen TS, Augustin MT, Mäkinen JM, Kokkonen J, Karttunen TJ. High endothelial venules of the lymph nodes express Fas ligand. J Histochem Cytochem. 2004;52(5):693–9.
Article
CAS
PubMed
Google Scholar
Verma RK, Gunda V, Pawar SC, Sudhakar YA. Extra cellular matrix derived metabolite regulates angiogenesis by FasL mediated apoptosis. PLoS One. 2013;8(12):e80555.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gong Q, Qiu S, Li S, Ma Y, Chen M, Yao Y, et al. Proapoptotic PEDF functional peptides inhibit prostate tumor growth—a mechanistic study. Biochem Pharmacol. 2014;92(3):425–37.
Article
CAS
PubMed
Google Scholar
Sjöström-Mattson J, Von Boguslawski K, Bengtsson NO, Mjaaland I, Salmenkivi K, Blomqvist C. The expression of p53, bcl-2, bax, fas and fasL in the primary tumour and lymph node metastases of breast cancer. Acta Oncol. 2009;48(8):1137–43.
Article
PubMed
CAS
Google Scholar
Li Q, Peng J, Li XH, Liu T, Liang QC, Zhang GY. Clinical significance of Fas and FasL protein expression in gastric carcinoma and local lymph node tissues. World J Gastroenterol: WJG. 2010;16(10):1274.
Article
PubMed
CAS
Google Scholar
Knechtel G, Hofmann G, Gerger A, Renner W, Langsenlehner T, Szkandera J, et al. Analysis of common germline polymorphisms as prognostic factors in patients with lymph node-positive breast cancer. J Cancer Res Clin Oncol. 2010;136(12):1813–9.
Article
CAS
PubMed
Google Scholar
Seitz DH, Palmer A, Niesler U, Braumüller ST, Bauknecht S, Gebhard F, et al. Altered expression of Fas receptor on alveolar macrophages and inflammatory effects of soluble Fas ligand following blunt chest trauma. Shock. 2011;35(6):610–7.
Article
CAS
PubMed
Google Scholar
Cobbaut M, Derua R, Döppler H, Lou HJ, Vandoninck S, Storz P, et al. Differential regulation of PKD isoforms in oxidative stress conditions through phosphorylation of a conserved Tyr in the P+ 1 loop. Sci Rep. 2017;7(1):887.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu J, Millard M, Ren X, Cox OT, Erdreich-Epstein A. c-Abl mediates endothelial apoptosis induced by inhibition of integrins αvβ3 and αvβ5 and by disruption of actin. Blood. 2010;115(13):2709-18.
Liebl J. Cdk5 and Foxc2–a new relationship in the lymphatic vasculature. Oncotarget. 2015;6(26):21799.
Article
PubMed
PubMed Central
Google Scholar
Fu MR, Conley YP, Axelrod D, Guth AA, Yu G, Fletcher J, et al. Precision assessment of heterogeneity of lymphedema phenotype, genotypes and risk prediction. Breast. 2016;29:231–40.
Article
PubMed
PubMed Central
Google Scholar
Agollah GD, Gonzalez-Garay ML, Rasmussen JC, Tan IC, Aldrich MB, Darne C, et al. Evidence for SH2 domain-containing 5′-inositol phosphatase-2 (SHIP2) contributing to a lymphatic dysfunction. PLoS One. 2014;9(11):e112548.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smpokou P, Tworog-Dube E, Kucherlapati RS, Roberts AE. Medical complications, clinical findings, and educational outcomes in adults with Noonan syndrome. Am J Med Genet A. 2012;158(12):3106–11.
Article
CAS
Google Scholar
Cordeddu V, Yin JC, Gunnarsson C, Virtanen C, Drunat S, Lepri F, et al. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome. Hum Mutat. 2015;36(11):1080–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M, et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell. 2011;20(5):661–73.
Article
CAS
PubMed
PubMed Central
Google Scholar