Youn A, Kim KI, Rabadan R, Tycko B, Shen Y, Wang S. A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes. BMC Med Genomics. 2018;11(1):98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Singla A. Epidemiology of breast cancer: current figures and trends. In: Mehta S, Singla A, editors. Preventive oncology for the gynecologist. Springer; 2019. p. 335–9.
Chapter
Google Scholar
Zhao D, Qiao J, He H, Song J, Zhao S, Yu J. TFPI2 suppresses breast cancer progression through inhibiting TWIST-integrin α5 pathway. Mol Med. 2020;26:1–10.
Google Scholar
Sheikine Y, Kuo FC, Lindeman NI. Clinical and technical aspects of genomic diagnostics for precision oncology. J Clin Oncol. 2017;35(9):929–33.
Article
CAS
PubMed
Google Scholar
Mock A, Murphy S, Morris J, Marass F, Rosenfeld N, Massie C. CVE: an R package for interactive variant prioritisation in precision oncology. BMC Med Genomics. 2017;10(1):37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith NG, Gyanchandani R, Shah OS, Gurda GT, Lucas PC, Hartmaier RJ, et al. Targeted mutation detection in breast cancer using MammaSeqTM. Breast Cancer Res. 2019;21(1):22.
Article
PubMed
PubMed Central
Google Scholar
Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Rev Clin Oncol. 2008;5(10):588.
Article
CAS
Google Scholar
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58.
Article
PubMed
Google Scholar
Baronti F, Micheli A, Passaro A, Starita A. Machine learning contribution to solve prognostic medical problems. Outcome Predict Cancer. 2006;261:e001554.
Google Scholar
Moody L, Chen H, Pan Y-X. Considerations for feature selection using gene pairs and applications in large-scale dataset integration, novel oncogene discovery, and interpretable cancer screening. BMC Med Genomics. 2020;13(10):1–20.
Google Scholar
Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
Google Scholar
Hosni M, Abnane I, Idri A, de Gea JMC, Alemán JLF. Reviewing ensemble classification methods in breast cancer. Comput Methods Programs Biomed. 2019;177:89–112.
Article
PubMed
Google Scholar
Mirsadeghi L, Banaei-Moghaddam AM, Beh-Afarin SR, Haji R. A post-method condition analysis of using ensemble machine learning for cancer prognosis and diagnosis: a systematic review.
Gevaert O, De Smet F, Timmerman D, Moreau Y, De Moor B. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics. 2006;22(14):e184–90.
Article
CAS
PubMed
Google Scholar
Moriyama T, Imoto S, Hayashi S, Shiraishi Y, Miyano S, Yamaguchi R. A Bayesian model integration for mutation calling through data partitioning. Bioinformatics. 2019;35:4247–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheriguene S, Azizi N, Zemmal N, Dey N, Djellali H, Farah N. Optimized tumor breast cancer classification using combining random subspace and static classifiers selection paradigms. In: Hassanien AE, Grosan C, Fahmy Tolba M, editors. Applications of intelligent optimization in biology and medicine. Springer; 2016. p. 289–307.
Chapter
Google Scholar
Les T, Markiewicz T, Osowski S, Kozlowski W, Jesiotr M. Fusion of FISH image analysis methods of HER2 status determination in breast cancer. Expert Syst Appl. 2016;61:78–85.
Article
Google Scholar
Zakeri P, Elshal S, Moreau Y. Gene prioritization through geometric-inspired kernel data fusion. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2015. p. 1559–65.
Liu Y, Tian F, Hu Z, DeLisi C. Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers. Sci Rep. 2015;5:10204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim M, Farnoud F, Milenkovic O. HyDRA: gene prioritization via hybrid distance-score rank aggregation. Bioinformatics. 2015;31(7):1034–43.
Article
CAS
PubMed
Google Scholar
Reboiro-Jato M, Díaz F, Glez-Peña D, Fdez-Riverola F. A novel ensemble of classifiers that use biological relevant gene sets for microarray classification. Appl Soft Comput. 2014;17:117–26.
Article
Google Scholar
Kuncheva LI, Rodríguez JJ. A weighted voting framework for classifiers ensembles. Knowl Inf Syst. 2014;38(2):259–75.
Article
Google Scholar
Janghel RR, Shukla A, Sharma S, Gnaneswar A V. Evolutionary Ensemble Model for Breast Cancer Classification. In: International conference in swarm intelligence. Springer; 2014. p. 8–16.
Cun Y, Fröhlich H. Network and data integration for biomarker signature discovery via network smoothed t-statistics. PLoS ONE. 2013;8(9):e73074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azizi N, Tlili-Guiassa Y, Zemmal N. A computer-aided diagnosis system for breast cancer combining features complementarily and new scheme of SVM classifiers fusion. Int J Multimed Ubiquitous Eng. 2013;8(4):45–58.
Google Scholar
Yang R, Daigle BJ, Petzold LR, Doyle FJ. Core module biomarker identification with network exploration for breast cancer metastasis. BMC Bioinformatics. 2012;13(1):1.
Article
CAS
Google Scholar
Glaab E, Bacardit J, Garibaldi JM, Krasnogor N. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS ONE. 2012;7(7):e39932.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reboiro-Jato M, Glez-Peña D, Díaz F, Fdez-Riverola F. A novel ensemble approach for multicategory classification of DNA microarray data using biological relevant gene sets. Int J Data Min Bioinform. 2012;6(6):602–16.
Article
PubMed
Google Scholar
Lederman D, Wang X, Zheng B, Sumkin JH, Tublin M, Gur D. Fusion of classifiers for REIS-based detection of suspicious breast lesions. In: SPIE medical imaging. International Society for Optics and Photonics; 2011. p. 79661C-79661C.
Zeng T, Liu J. Mixture classification model based on clinical markers for breast cancer prognosis. Artif Intell Med. 2010;48(2):129–37.
Article
PubMed
Google Scholar
Zhang X. Boosting twin support vector machine approach for MCs detection. In: 2009 APCIP 2009 Asia-Pacific conference on information processing. IEEE; 2009. p. 149–52.
Zhang X, Gao X, Wang M. MCs detection approach using Bagging and Boosting based twin support vector machine. In: 2009 SMC 2009 IEEE international conference on systems, man and cybernetics. IEEE; 2009. p. 5000–505.
Djebbari A, Liu Z, Phan S, Famili F. An ensemble machine learning approach to predict survival in breast cancer. Int J Comput Biol Drug Des. 2008;1(3):275–94.
Article
PubMed
Google Scholar
Alam KMR, Islam MM. Combining boosting with negative correlation learning for training neural network ensembles. In: 2007 international conference on information and communication technology. IEEE; 2007. p. 68–71.
Franke L, Van BH, Fokkens L, De JED, Egmont-petersen M, Wijmenga C. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 2006;78(June):1011–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Y. Integration of gene functional diversity for effective cancer detection. Int J Syst Sci. 2006;37(13):931–8.
Article
Google Scholar
Matsui S. Genomic biomarkers for personalized medicine: development and validation in clinical studies. Comput Math Methods Med. 2013;2013:865980.
Article
PubMed
PubMed Central
Google Scholar
Huang L, Jiang X-L, Liang H-B, Li J-C, Chin L-H, Wei J-P, et al. Genetic profiling of primary and secondary tumors from patients with lung adenocarcinoma and bone metastases reveals targeted therapy options. Mol Med. 2020;26(1):1–11.
Article
CAS
Google Scholar
Lan Y, Zhao E, Luo S, Xiao Y, Li X, Cheng S. Revealing clonality and subclonality of driver genes for clinical survival benefits in breast cancer. Breast Cancer Res Treat. 2019;175(1):91–104.
Article
CAS
PubMed
Google Scholar
Baesens B, Viaene S, Van Gestel T, Suykens J, Dedene G, De Moor B, et al. Least squares support vector machine classifiers: an empirical evaluation. DTEW Res Rep. 2000;0003:1–16.
Google Scholar
Maclin PS, Dempsey J, Brooks J, Rand J. Using neural networks to diagnose cancer. J Med Syst. 1991;15(1):11–9.
Article
CAS
PubMed
Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Article
Google Scholar
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013;29(18):2238–44.
Article
CAS
PubMed
Google Scholar
Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals cancer drivers. Nucleic Acids Res. 2012;40(21):e169–e169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerami E, Demir E, Schultz N, Taylor BS, Sander C. Automated network analysis identifies core pathways in glioblastoma. PLoS ONE. 2010;5(2):e8918.
Article
PubMed
PubMed Central
CAS
Google Scholar
Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev cancer. 2004;4(3):177.
Article
CAS
PubMed
PubMed Central
Google Scholar
An O, Pendino V, D’Antonio M, Ratti E, Gentilini M, Ciccarelli FD. NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database. 2014;2014:bau015.
Article
PubMed
PubMed Central
CAS
Google Scholar
Repana D, Nulsen J, Dressler L, Bortolomeazzi M, Venkata SK, Tourna A, et al. The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 2019;20(1):1.
Article
PubMed
PubMed Central
Google Scholar
The experimentally supported gene-metastasis association data. 2017. https://hcmdb.isanger.com/images/hcmdb/gene_publication.xls. Accessed 22 Jun 2017.
TCGA.BRCA.muse.b8ca5856-9819-459c-87c5-94e91aca4032.DR-10.0.somatic.maf.gz. 2018. https://portal.gdc.cancer.gov/files/b8ca5856-9819-459c-87c5-94e91aca4032. Accessed 23 Aug 2018.
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. AACR; 2012.
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria J-C, et al. Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med. 2016;13(12):e1002201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wagle N, Painter C, Anastasio E, Dunphy M, McGillicuddy M, Kim D, et al. The Metastatic Breast Cancer (MBC) project: accelerating translational research through direct patient engagement. American Society of Clinical Oncology; 2017.
Google Scholar
cBioPortal/datahub-study-curation-tools. 2019. https://github.com/cBioPortal/datahubstudycurationtools/tree/master/split_data_clinical_sample_patient. Accessed 11 Jan 2019.
García-Díaz P, Sánchez-Berriel I, Martínez-Rojas JA, Diez-Pascual AM. Unsupervised feature selection algorithm for multiclass cancer classification of gene expression RNA-Seq data. Genomics. 2020;112(2):1916–25.
Article
PubMed
CAS
Google Scholar
Kim S, Park T, Kon M. Cancer survival classification using integrated data sets and intermediate information. Artif Intell Med. 2014;62(1):23–31.
Article
PubMed
Google Scholar
Dashtban M, Balafar M, Suravajhala P. Gene selection for tumor classification using a novel bio-inspired multi-objective approach. Genomics. 2018;110(1):10–7.
Article
CAS
PubMed
Google Scholar
Bhanot G, Alexe G, Venkataraghavan B, Levine AJ. A robust meta-classification strategy for cancer detection from MS data. Proteomics. 2006;6(2):592–604.
Article
CAS
PubMed
Google Scholar
Palade V. Class imbalance learning methods for support vector machines. 2013.
Wang X, Liu X, Matwin S. A distributed instance-weighted SVM algorithm on large-scale imbalanced datasets. In: Proceedings of 2014 IEEE international conference on Big Data, IEEE Big Data 2014. 2015; p. 45–51.
Ming C, Viassolo V, Probst-Hensch N, Chappuis PO, Dinov ID, Katapodi MC. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Breast Cancer Res. 2019;21(1):75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Polikar R. Ensemble based systems in decision making. Circuits Syst Mag IEEE. 2006;6(3):21–45.
Article
Google Scholar
Duan X, Yang Y, Tan S, Wang S, Feng X, Cui L, et al. Application of artificial neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer. Med Biol Eng Comput. 2017;55(8):1239–48.
Article
PubMed
Google Scholar
Walczak S. Artificial neural networks. In: Encyclopedia of information science and technology, 4th edn. IGI Global; 2018. p. 120–31.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12(Oct):2825–30.
Google Scholar
Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2017;46(D1):D649–55.
Article
PubMed Central
CAS
Google Scholar
Wu G, Haw R. Functional interaction network construction and analysis for disease discovery. In: Wu C, Arighi C, Ross K, editors. Protein bioinformatics. Berlin: Springer; 2017. p. 235–53.
Chapter
Google Scholar
Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics. 2017;18(1):142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bioinformatics & Evolutionary Genomics. 2018. http://bioinformatics.psb.ugent.be/webtools/Venn/. Accessed 20 Nov 2018.
Dietterich TG. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998;10(7):1895–923.
Article
CAS
PubMed
Google Scholar
Chen X, Cao Q, Liao R, Wu X, Xun S, Huang J, et al. Loss of ABAT-mediated GABAergic system promotes basal-like breast cancer progression by activating Ca2+-NFAT1 axis. Theranostics. 2019;9(1):34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao G, Li N, Li S, Wu W, Wang X, Gu J. High methylation of the 4-aminobutyrate aminotransferase gene predicts a poor prognosis in patients with myelodysplastic syndrome. Int J Oncol. 2019;54(2):491–504.
CAS
PubMed
Google Scholar
Sas L, Lardon F, Vermeulen PB, Hauspy J, Van Dam P, Pauwels P, et al. The interaction between ER and NFκB in resistance to endocrine therapy. Breast Cancer Res. 2012;14(4):212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng Q, Michael IP, Zhang P, Saghafinia S, Knott G, Jiao W, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573(7775):526–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cilluffo D, Barra V, Spatafora S, Coronnello C, Contino F, Bivona S, et al. Aneuploid IMR90 cells induced by depletion of pRB, DNMT1 and MAD2 show a common gene expression signature. Genomics. 2020;112(3):2541–9.
Article
CAS
PubMed
Google Scholar
Hii L-W, Chung FF-L, Soo JS-S, Tan BS, Mai C-W, Leong C-O. Histone deacetylase (HDAC) inhibitors and doxorubicin combinations target both breast cancer stem cells and non-stem breast cancer cells simultaneously. Breast Cancer Res Treat. 2019;179:615–29.
Article
PubMed
CAS
Google Scholar
Cai WL, Greer CB, Chen JF, Arnal-Estapé A, Cao J, Yan Q, et al. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain. BMC Med Genomics. 2020;13(1):1–18.
Article
CAS
Google Scholar
Liu J, Campen A, Huang S, Peng S-B, Ye X, Palakal M, et al. Identification of a gene signature in cell cycle pathway for breast cancer prognosis using gene expression profiling data. BMC Med Genomics. 2008;1(1):39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Raschka S. Python machine learning. Packt publishing ltd; 2015.
Tang J, Alelyani S, Liu H. Data classification: algorithms and applications. Data Data Mining and Knowledge Discovery Series. CRC Press. 2014;37–64.
Wolpert DH. Stacked generalization. Neural Netw. 1992;5(2):241–59.
Article
Google Scholar
Griffith OL, Gray JW. Omic approaches to preventing or managing metastatic breast cancer. Breast Cancer Res. 2011;13(6):230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohart F, Gautier B, Singh A, Lê cao KA. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11):e1005752.
Article
PubMed
PubMed Central
CAS
Google Scholar
Merrill NM, Lachacz EJ, Vandecan NM, Ulintz PJ, Bao L, Lloyd JP, et al. Molecular determinants of drug response in TNBC cell lines. Breast Cancer Res Treat. 2020;179(2):337–47.
Article
CAS
PubMed
Google Scholar