Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.
Article
PubMed
Google Scholar
Allouch S, Malki A, Allouch A, Gupta I, Vranic S, Al Moustafa AE. High-risk HPV oncoproteins and PD-1/PD-L1 interplay in human cervical cancer: recent evidence and future directions. Front Oncol. 2020;10:914. https://doi.org/10.3389/fonc.2020.00914.
Article
PubMed
PubMed Central
Google Scholar
Choi CH, Choi HJ, Lee JW, Kang ES, Cho D, Park BK, et al. Phase I study of a B cell-based and monocyte-based immunotherapeutic vaccine, BVAC-C in human papillomavirus type 16- or 18-positive recurrent cervical cancer. J Clin Med. 2020;9(1):147. https://doi.org/10.3390/jcm9010147.
Article
CAS
PubMed Central
Google Scholar
Martinho O, Silva-Oliveira R, Cury FP, Barbosa AM, Granja S, Evangelista AF, et al. HER family receptors are important theranostic biomarkers for cervical cancer: blocking glucose metabolism enhances the therapeutic effect of HER inhibitors. Theranostics. 2017;7(3):717–32. https://doi.org/10.7150/thno.17154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roszik J, Ring KL, Wani KM, Lazar AJ, Yemelyanova AV, Soliman PT, et al. Gene expression analysis identifies novel targets for cervical cancer therapy. Front Immunol. 2018;9:2102. https://doi.org/10.3389/fimmu.2018.02102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O’Laughlin M, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25(3):379–92. https://doi.org/10.1016/j.ccr.2014.01.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Liu J, Nanga P, Liu Y, Cicek AE, Knoblauch N, et al. Detailed modeling of positive selection improves detection of cancer driver genes. Nat Commun. 2019;10(1):3399. https://doi.org/10.1038/s41467-019-11284-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Ding Y, Chen Y, Jiang J, Chen Y, Huang Y, et al. Whole-exome sequencing of alpha-fetoprotein producing gastric carcinoma reveals genomic profile and therapeutic targets. Nat Commun. 2021;12(1):3946. https://doi.org/10.1038/s41467-021-24170-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrader KA, Cheng DT, Joseph V, Prasad M, Walsh M, Zehir A, et al. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol. 2016;2(1):104–11. https://doi.org/10.1001/jamaoncol.2015.5208.
Article
PubMed
PubMed Central
Google Scholar
Crowley FJ, O’Cearbhaill RE, Collins DC. Exploiting somatic alterations as therapeutic targets in advanced and metastatic cervical cancer. Cancer Treat Rev. 2021;98:102225. https://doi.org/10.1016/j.ctrv.2021.102225.
Article
CAS
PubMed
Google Scholar
Takada K, Aizawa Y, Sano D, Okuda R, Sekine K, Ueno Y, et al. Establishment of PDX-derived salivary adenoid cystic carcinoma cell lines using organoid culture method. Int J Cancer. 2021;148(1):193–202. https://doi.org/10.1002/ijc.33315.
Article
CAS
PubMed
Google Scholar
Landuzzi L, Manara MC, Lollini PL, Scotlandi K. Patient derived xenografts for genome-driven therapy of osteosarcoma. Cells. 2021;10(2):416. https://doi.org/10.3390/cells10020416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koga Y, Ochiai A. Systematic review of patient-derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells. 2019;8(5):418. https://doi.org/10.3390/cells8050418.
Article
CAS
PubMed Central
Google Scholar
He S, Hu B, Li C, Lin P, Tang WG, Sun YF, et al. PDXliver: a database of liver cancer patient derived xenograft mouse models. BMC Cancer. 2018;18(1):550. https://doi.org/10.1186/s12885-018-4459-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu CX, Wang XQ, Chok SH, Man K, Tsang SHY, Chan ACY, et al. Blocking CDK1/PDK1/beta-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics. 2018;8(14):3737–50. https://doi.org/10.7150/thno.25487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Chen H, Guo Z, Fu K, Yao L, Fu L, et al. Targeted radionuclide therapy in patient-derived xenografts using (177)Lu-EB-RGD. Mol Cancer Ther. 2020;19(10):2034–43. https://doi.org/10.1158/1535-7163.MCT-19-1098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tew BY, Legendre C, Schroeder MA, Triche T, Gooden GC, Huang Y, et al. Patient-derived xenografts of central nervous system metastasis reveal expansion of aggressive minor clones. Neuro Oncol. 2020;22(1):70–83. https://doi.org/10.1093/neuonc/noz137.
Article
CAS
PubMed
Google Scholar
Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56. https://doi.org/10.1101/gr.239244.118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutter C, Zenklusen JC. The cancer genome atlas: creating lasting value beyond its data. Cell. 2018;173(2):283–5. https://doi.org/10.1016/j.cell.2018.03.042.
Article
CAS
PubMed
Google Scholar
Hoffmann C, Bachran C, Stanke J, Elezkurtaj S, Kaufmann AM, Fuchs H, et al. Creation and characterization of a xenograft model for human cervical cancer. Gynecol Oncol. 2010;118(1):76–80. https://doi.org/10.1016/j.ygyno.2010.03.019.
Article
PubMed
Google Scholar
Chaudary N, Pintilie M, Schwock J, Dhani N, Clarke B, Milosevic M, et al. Characterization of the tumor-microenvironment in patient-derived cervix xenografts (OCICx). Cancers. 2012;4(3):821–45. https://doi.org/10.3390/cancers4030821.
Article
PubMed
PubMed Central
Google Scholar
Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, et al. Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS ONE. 2015;10(2):e0117417. https://doi.org/10.1371/journal.pone.0117417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh D-Y, Kim S, Choi Y-L, Cho YJ, Oh E, Choi J-J, et al. HER2 as a novel therapeutic target for cervical cancer. Oncotarget. 2015;6(34):36219–30. https://doi.org/10.18632/oncotarget.5283.
Article
PubMed
PubMed Central
Google Scholar
Larmour LI, Cousins FL, Teague JA, Deane JA, Jobling TW, Gargett CE. A patient derived xenograft model of cervical cancer and cervical dysplasia. PLoS ONE. 2018;13(10):e0206539. https://doi.org/10.1371/journal.pone.0206539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tornesello ML, Buonaguro L, Buonaguro FM. Mutations of the TP53 gene in adenocarcinoma and squamous cell carcinoma of the cervix: a systematic review. Gynecol Oncol. 2013;128(3):442–8. https://doi.org/10.1016/j.ygyno.2012.11.017.
Article
CAS
PubMed
Google Scholar
Tommasino M, Accardi R, Caldeira S, Dong W, Malanchi I, Smet A, et al. The role of TP53 in cervical carcinogenesis. Hum Mutat. 2003;21(3):307–12. https://doi.org/10.1002/humu.10178.
Article
CAS
PubMed
Google Scholar
Yu L, Fei L, Liu X, Pi X, Wang L, Chen S. Application of p16/Ki-67 dual-staining cytology in cervical cancers. J Cancer. 2019;10(12):2654–60. https://doi.org/10.7150/jca.32743.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krtinic D, Zivadinovic R, Jovic Z, Pesic S, Mihailovic D, Ristic L, et al. Significance of the Ki-67 proliferation index in the assessment of the therapeutic response to cisplatin-based chemotherapy in patients with advanced cervical cancer. Eur Rev Med Pharmacol Sci. 2018;22(16):5149–55. https://doi.org/10.26355/eurrev_201808_15710.
Article
CAS
PubMed
Google Scholar
Wu CC, Rau KM, Lee WC, Hsieh MC, Liu JS, Chen YY, et al. Presence of chronic obstructive pulmonary disease (COPD) impair survival in lung cancer patients receiving epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI): a nationwide, population-based cohort study. J Clin Med. 2019;8(7):1024. https://doi.org/10.3390/jcm8071024.
Article
CAS
PubMed Central
Google Scholar
Wang M, Xiong Z. The mutation and expression level of LRP1B are associated with immune infiltration and prognosis in hepatocellular carcinoma. Int J Gen Med. 2021;14:6343–58. https://doi.org/10.2147/IJGM.S333390.
Article
PubMed
PubMed Central
Google Scholar
Hu S, Zhao X, Qian F, Jin C, Hou K. Correlation between LRP1B mutations and tumor mutation burden in gastric cancer. Comput Math Methods Med. 2021;2021:1522250. https://doi.org/10.1155/2021/1522250.
Article
PubMed
PubMed Central
Google Scholar
Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015;47(2):158–63. https://doi.org/10.1038/ng.3178.
Article
CAS
PubMed
Google Scholar
Cao CH, Liu R, Lin XR, Luo JQ, Cao LJ, Zhang QJ, et al. LRP1B mutation is associated with tumor HPV status and promotes poor disease outcomes with a higher mutation count in HPV-related cervical carcinoma and head & neck squamous cell carcinoma. Int J Biol Sci. 2021;17(7):1744–56. https://doi.org/10.7150/ijbs.56970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Helmbacher F. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biol. 2018;16(5):e2004734. https://doi.org/10.1371/journal.pbio.2004734.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin SC, Lin LH, Yu SY, Kao SY, Chang KW, Cheng HW, et al. FAT1 somatic mutations in head and neck carcinoma are associated with tumor progression and survival. Carcinogenesis. 2018;39(11):1320–30. https://doi.org/10.1093/carcin/bgy107.
Article
CAS
PubMed
Google Scholar
Li M, Zhong Y, Wang M. Fat1 suppresses the tumor-initiating ability of nonsmall cell lung cancer cells by promoting Yes-associated protein 1 nuclear-cytoplasmic translocation. Environ Toxicol. 2021;36(11):2333–41. https://doi.org/10.1002/tox.23347.
Article
CAS
PubMed
Google Scholar
Chen MY,Sun XW,Wang YZ,Ling KJ,Chen C,Cai XW,et al. FAT1 inhibits the proliferation and metastasis of cervical cancer cells by binding β-catenin. Int J Clin Exp Pathol. 2019;12(10):3807–18.
PubMed
PubMed Central
Google Scholar
Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan S, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45(3):253–61. https://doi.org/10.1038/ng.2538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung TK, Van Hummelen P, Chan PK, Cheung TH, Yim SF, Yu MY, et al. Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. Int J Cancer. 2015;137(4):776–83. https://doi.org/10.1002/ijc.29456.
Article
CAS
PubMed
Google Scholar
Huang J, Qian Z, Gong Y, Wang Y, Guan Y, Han Y, et al. Comprehensive genomic variation profiling of cervical intraepithelial neoplasia and cervical cancer identifies potential targets for cervical cancer early warning. J Med Genet. 2019;56(3):186–94. https://doi.org/10.1136/jmedgenet-2018-105745.
Article
CAS
PubMed
Google Scholar