In a longitudinal study of actual DTC-PGT customers, we found modest, but statistically significant, increases in self-reported vegetable consumption and strength exercise frequency post-PGT. There appears to be a difference in diet and exercise changes when participants are separated by self-reported health status, as the lower SRH group also demonstrated a significant increase in fruit consumption and frequency of light and vigorous exercise, while a decrease in the frequency of light exercise was observed among the higher SRH group. Although nearly a third of participants reported making diet and exercise changes that were directly motivated by their PGT results, there was no consistent evidence that specific genetic risk information received from PGT, or post-PGT change in cardiometabolic disease risk perception, were associated with the specific diet and exercise variables that we measured. The two significant findings observed in our analyses of genetic risk information and change in risk perception deviate from an overall pattern of null results that suggest that the risk variables we evaluated were not associated with observed changes in diet and exercise following PGT.
The consistent observation of diet and exercise improvements within the lower SRH group, but not within the higher SRH group may reflect the fact that individuals with higher baseline SRH were already engaging more frequently in healthy diet and exercise behaviors before PGT; moreover, they may in fact be objectively healthier than the lower SRH group, and have a lesser (or at least perceived lesser) need to improve their diet and exercise. The apparent reduction in frequency of light exercise in this group is also of interest, for if accurate, this could represent an undesirable effect of receiving genetic risk information among individuals with high SRH. We cannot determine whether health behavior changes we observed were a consequence of the PGT experience, or if the decision to pursue PGT was part of a broader goal to improve one’s health that incorporated an intention to modify diet and exercise. Finally, although we did not find any consistent evidence that cardiometabolic or total genetic risk burden were associated with diet or exercise changes post-PGT, it is possible that some other genetic information returned by the companies (e.g., results pertaining to pharmacogenomics or non-medical physical traits) could motivate diet and exercise behavior change. In fact, it may be the case that no single genetic result is universally motivating to PGT consumers, but rather that certain individuals may be inclined to change their diet based on an elevated risk of type 2 diabetes, while others (perhaps owing to personal context or family history) may be more immediately motivated by an elevated genetic risk of breast cancer. Nevertheless, the recent report of reduced coronary events among individuals with high genetic risk who were noted to follow good lifestyle habits [5] highlights the importance of efforts to use genetic testing as a tool to motivate positive lifestyle changes.
Prior studies of the effect of genetic risk information on health behavior change have not typically reported significant post-testing changes to diet or exercise [8–10]. For example, Bloss et al. followed approximately 2000 Navigenics customers over a year and examined changes in dietary fat intake and exercise [8, 9]. In that study, no significant changes were observed at either the 3-month or 12-month follow-up; however, participants in this study were employees of a personalized medicine research institute, and had a PGT experience that was facilitated by the research team (e.g., participants could ask questions of researchers during the testing process). Kaufman et al. reported a cross-sectional post-PGT survey of 23andMe, deCODEme, and Navigenics customers, of which one third reported that they were being more careful about their diet and 14% reported they were exercising more. In addition, they found evidence that self-reported behavior change varied by self-perceived health status (e.g., the poorer self-perceived health group was more likely to report changes to supplement use) [10]. A major limitation of these findings, however, is that the data were collected at only one time point, and no specific diet or exercise behavior variables (e.g., frequency, intensity) were measured.
In addition to the observational studies described above, systematic reviews of randomized controlled trials (RCTs) and other trials have demonstrated few effects of disclosing genetic risk information on health behavior [19, 20]. (However, it is important to note that most studies examining the impact of genetic information are not comprised of PGT consumers). For example, a 2010 Cochrane review examined the effects of communicating DNA-based risk estimates on diet, physical activity and smoking cessation from 13 studies [19], and the authors concluded that the information had little or no effect on physical activity and smoking cessation, but might have a small effect on diet. A recent update to this systematic review examined 18 studies (of which 7 examined diet and 6 examined physical activity) and concluded that DNA-based risk estimates did not change any of the health behavior outcomes that were assessed [20]. However, despite this conclusion, the pooled analysis of the dietary study was borderline significant (p = 0.05) and the authors noted that there may be a small effect of genetic risk communication on diet. Indeed, a number of RCTs and intervention studies have demonstrated dietary changes following disclosure of genetic information [21–24]. While our investigation utilized a prospective observational design, it is worthwhile to note some consistency of results between the different research approaches. Moreover, there is likely a substantial degree of heterogeneity among both observational studies and RCTs in the specific type of genetic information that is returned, the presentation of the information, and the health-related recommendations that are given to individuals. Heterogeneity may contribute to some varied observations and effects that have been reported in the literature on this topic.
Our results support the position that DTC-PGT has the potential to motivate health behavior change in users who may benefit from diet and exercise modifications, although the small magnitude of observed diet and exercise changes (on the order, for example, of a few to a dozen additional days of exercise per year) indicates that genetic risk information – at least as provided through a commercial, DTC model – is likely limited in its power to effect change. Nonetheless, we are encouraged by the dual findings that nearly a third of participants reported making diet or exercise changes on the basis of their DTC-PGT results, and that food intake and exercise frequency measurements were consistent with reported changes, particularly among those participants who rated themselves as having lower health status. If DTC-PGT can effect behavior change, it is likely because its users are already sufficiently health-conscious, and in some cases specifically motivated to obtain testing as a means to learn about and improve their health [17, 25–28]. Therefore, rather than its consumers responding to specific genetic risk information or accompanying recommendations, it may be the case that DTC-PGT motivates behavior change via a “halo effect”: [29] participants emerge from the PGT experience (considered to begin when they first learn of commercial genetics and engage in decision-making about testing, and to continue through to their extended contemplation and sharing of results with friends, family, and health care providers) with a reminder of the importance of certain health behaviors and a motivation to play an active role in their health management. This interpretation is consistent with the fact that DTC-PGT reports contain dozens of results, contextualized within broad educational components addressing disease etiology, both genetic and non-genetic risk factors, and genetic mechanisms of disease [30]. For example, DTC-PGT reports commonly summarize the results of a prior epidemiology studies, present population disease statistics, and orient consumers to the concepts and interpretation of odds ratios and relative risk; moreover, these reports are carefully personalized to the consumer (e.g., by repeatedly using their name, referring to their gender and age, and describing their unique genetic makeup), which may make the information feel more relevant and valuable to the individual consumer. Within this enriched, educational, and highly personalized context, DTC-PGT as a health education activity may have a unique ability to impact how individuals perceive health, and how they make decisions regarding their health behaviors and medical care.
Limitations of this study include its reliance on self-reported data and observational design. However, the consistency we observed across survey items measuring similar effects (i.e. change in specific diet and exercise variables and general self-report of diet and exercise changes) is reassuring. Moreover, our study improves upon limitations of previous observational work, particularly in its measurement of pre- and post-disclosure changes to specific diet and exercise variables using validated tools, consideration of baseline health status, measurement of participants’ perceptions of their own disease risks, and our sample of customers who sought commercial PGT online [18]. While the PGen Study sample is somewhat homogeneous (e.g., largely White), there is evidence to suggest that PGen Study enrollees are broadly representative of the typical DTC-PGT consumer [12]. Our findings are not intended to be generalizable to the general U.S. population, but rather to the individuals who pursue commercial DTC-PGT. The changes we observed to diet and exercise were self-reported and just fractions of a dietary serving and exercise frequency, so the significance of these observations as they relate to health outcomes is uncertain. We also did not distinguish between variable factors such as exercise duration or type of fruit or vegetable. Moreover, it is unclear to what extent reporting may have been influenced by social desirability or persisted longer than 6 months. However, modest improvements in diet and exercise have been shown to be associated with population health [31–33]. Finally, because this was an observational study, the design does not enable us to have accounted for all factors that could have influenced our outcome variables of interest. Moreover, we cannot rule out the possibility that our findings were due to chance, particularly given the number of hypothesis tests performed. We also note that the DTC-PGT climate in the United States has changed since the PGen Study was conducted [1], and that 23andMe no longer offers consumers the disease risk estimates reported here, while Pathway Genomics has left the DTC market altogether. Thus, our findings do not accurately reflect a current product on the market, but have the advantage of capturing a consumer experience about which the FDA has requested additional research, and which may be reintroduced in the future, pending FDA approval.