Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Sci (NY). 2015; 348(6230):69–74. https://doi.org/10.1126/science.aaa4971.
Article
CAS
Google Scholar
Blankenstein T, Leisegang M, Uckert W, Schreiber H. Targeting cancer-specific mutations by T cell receptor gene therapy. Curr Opin Immun. 2015; 33:112–9. https://doi.org/10.1016/J.COI.2015.02.005.
Article
CAS
Google Scholar
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Sci (NY). 2015; 348(6230):62–8. https://doi.org/10.1126/science.aaa4967.
Article
CAS
Google Scholar
Wirth TC, Kühnel F. Neoantigen Targeting - Dawn of a New Era in Cancer Immunotherapy?Front Immun. 2017; 8:1848. https://doi.org/10.3389/fimmu.2017.01848.
Article
CAS
Google Scholar
Bethune MT, Joglekar AV. Personalized T cell-mediated cancer immunotherapy: progress and challenges. Curr Opin Biotechnol. 2017; 48:142–52. https://doi.org/10.1016/J.COPBIO.2017.03.024.
Article
CAS
PubMed
Google Scholar
Kahles A, Lehmann K-V, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Cancer Genome Atlas Research Network, Rätsch G. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Canc cell. 2018; 34(2):211–2246. https://doi.org/10.1016/j.ccell.2018.07.001.
Article
CAS
Google Scholar
Laumont CM, Vincent K, Hesnard L, Audemard É, Bonneil É, Laverdure J-P, Gendron P, Courcelles M, Hardy M-P, Côté C, Durette C, St-Pierre C, Benhammadi M, Lanoix J, Vobecky S, Haddad E, Lemieux S, Thibault P, Perreault C. Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med. 2018; 10(470):5516. https://doi.org/10.1126/scitranslmed.aau5516.
Article
CAS
Google Scholar
Liu XS, Mardis ER. Applications of Immunogenomics to Cancer. Cell. 2017; 168(4):600–12. https://doi.org/10.1016/j.cell.2017.01.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yarchoan M, Johnson BA, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nature Rev Canc. 2017; 17(4):209–22. https://doi.org/10.1038/nrc.2016.154.
Article
CAS
Google Scholar
Luo H, Ye H, Ng HW, Shi L, Tong W, Mendrick DL, Hong H. Machine Learning Methods for Predicting HLA-Peptide Binding Activity. Bioinforma Biol Insights. 2015; 9(Suppl 3):21–9. https://doi.org/10.4137/BBI.S29466.
CAS
Google Scholar
Gfeller D, Bassani-Sternberg M, Schmidt J, Luescher IF. Current tools for predicting cancer-specific T cell immunity. Oncoimmunology. 2016; 5(7):1177691. https://doi.org/10.1080/2162402X.2016.1177691.
Article
CAS
Google Scholar
Hundal J, Kiwala S, Feng Y-Y, Liu CJ, Govindan R, Chapman WC, Uppaluri R, Swamidass SJ, Griffith OL, Mardis ER, Griffith M. Accounting for proximal variants improves neoantigen prediction. Nature Genet. 2019; 51(1):175–179. https://doi.org/10.1038/s41588-018-0283-9.
Article
CAS
PubMed
Google Scholar
Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017; 18(1):248–62. https://doi.org/10.1016/J.CELREP.2016.12.019.
Article
CAS
PubMed
Google Scholar
Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, Gao J, Socci ND, Solit DB, Olshen AB, Schultz N, Taylor BS. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nature Biotechnol. 2016; 34(2):155–63. https://doi.org/10.1038/nbt.3391.
Article
CAS
Google Scholar
Wu J, Zhao W, Zhou B, Su Z, Gu X, Zhou Z, Chen S. TSNAdb: A Database for Tumor-specific Neoantigens from Immunogenomics Data Analysis. Genomics, Proteomics Bioinforma. 2018; 16(4):276–82. https://doi.org/10.1016/J.GPB.2018.06.003.
Article
Google Scholar
Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM. Toward a Shared Vision for Cancer Genomic Data. New Engl J Med. 2016; 375(12):1109–12. https://doi.org/10.1056/NEJMp1607591.
Article
PubMed
Google Scholar
Institute NC. Bioinformatics Pipeline: DNA-Seq Analysis. https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling\Pipeline/. Accessed 09/08/2017.
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536(7616):285–91. https://doi.org/10.1038/nature19057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snyder A, Chan TA. Immunogenic peptide discovery in cancer genomes. Curr Opin Genet Develop. 2015; 30:7–16. https://doi.org/10.1016/J.GDE.2014.12.003.
Article
CAS
Google Scholar
Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015; 43(D1):405–12. https://doi.org/10.1093/nar/gku938.
Article
CAS
Google Scholar
Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012; 64(3):177–86. https://doi.org/10.1007/s00251-011-0579-8.
Article
CAS
PubMed
Google Scholar
Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 2019; 11(1):56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Brief Bioinforma. 2016; 17(1):154–79. https://doi.org/10.1093/bib/bbv029.
Article
CAS
Google Scholar
Li L-P, Lampert JC, Chen X, Leitao C, Popović J, Müller W, Blankenstein T. Transgenic mice with a diverse human T cell antigen receptor repertoire. Nature Med. 2010; 16(9):1029–34. https://doi.org/10.1038/nm.2197.
Article
CAS
PubMed
Google Scholar
Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B. HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med. 1997; 185(12):2043–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Galarza FF, Takeshita LYC, Santos EJM, Kempson F, Maia MHT, Silva ALSd, Silva ALTe, Ghattaoraya GS, Alfirevic A, Jones AR, Middleton D. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015; 43(D1):784–8. https://doi.org/10.1093/nar/gku1166.
Article
CAS
Google Scholar
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Canc. 2015; 136(5):359–86. https://doi.org/10.1002/ijc.29210.
Article
CAS
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR, Yang JC, Rosenberg SA. Cancer genome landscapes. Sci (NY). 2013; 339(6127):1546–58. https://doi.org/10.1126/science.1235122.
Article
CAS
Google Scholar
Rubio-Perez C, Tamborero D, Schroeder MP, Antolín AA, Deu-Pons J, Perez-Llamas C, Mestres J, Gonzalez-Perez A, Lopez-Bigas N. In Silico Prescription of Anticancer Drugs to Cohorts of 28 Tumor Types Reveals Targeting Opportunities. Canc Cell. 2015; 27(3):382–96. https://doi.org/10.1016/J.CCELL.2015.02.007.
Article
CAS
Google Scholar
Vu HL, Rosenbaum S, Purwin TJ, Davies MA, Aplin AE. RAC1 P29S regulates PD-L1 expression in melanoma. Pigment Cell Melanoma Res. 2015; 28(5):590–8. https://doi.org/10.1111/pcmr.12392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Austinat M, Dunsch R, Wittekind C, Tannapfel A, Gebhardt R, Gaunitz F. Correlation between β-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Mole Canc. 2008; 7(1):21. https://doi.org/10.1186/1476-4598-7-21.
Article
CAS
Google Scholar
Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017; 10(1):101. https://doi.org/10.1186/s13045-017-0471-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spranger S, Gajewski TF. A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J Immun Canc. 2015; 3(1):43. https://doi.org/10.1186/s40425-015-0089-6.
Article
Google Scholar
Cho J, Kim SY, Kim YJ, Sim MH, Kim ST, Kim NKD, Kim K, Park W, Kim JH, Jang K-T, Lee J. Emergence of CTNNB1 mutation at acquired resistance to KIT inhibitor in metastatic melanoma. Clin Transl Oncol. 2017; 19(10):1247–52. https://doi.org/10.1007/s12094-017-1662-x.
Article
CAS
PubMed
Google Scholar
Reiter K, Polzer H, Krupka C, Maiser A, Vick B, Rothenberg-Thurley M, Metzeler KH, Dörfel D, Salih HR, Jung G, Nößner E, Jeremias I, Hiddemann W, Leonhardt H, Spiekermann K, Subklewe M, Greif PA. Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 2018; 32(2):313–22. https://doi.org/10.1038/leu.2017.257.
Article
CAS
PubMed
Google Scholar
Gfeller D, Bassani-Sternberg M. Predicting Antigen Presentation-What Could We Learn From a Million Peptides?Front Immun. 2018; 9:1716.
Article
CAS
Google Scholar
Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ. HLA-binding properties of tumor neoepitopes in humans. Canc Immun Res. 2014; 2(6):522–9. https://doi.org/10.1158/2326-6066.CIR-13-0227.
Article
CAS
Google Scholar
van Buuren MM, Calis JJ, Schumacher TN. High sensitivity of cancer exome-based CD8 T cell neo-antigen identification. OncoImmunology. 2014; 3(5):28836. https://doi.org/10.4161/onci.28836.
Article
Google Scholar
Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Experiment Med. 1996; 183(3):1185–92. https://doi.org/10.1084/JEM.183.3.1185.
Article
CAS
Google Scholar
Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Büschenfelde KH, Beach D. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Sci(NY). 1995; 269(5228):1281–4. https://doi.org/10.1126/SCIENCE.7652577.
Google Scholar
Landsberg J, Gaffal E, Cron M, Kohlmeyer J, Renn M, Tüting T. Autochthonous primary and metastatic melanomas in Hgf-Cdk4R24C mice evade T-cell-mediated immune surveillance. Pigment Cell Melanoma Res. 2010; 23(5):649–60. https://doi.org/10.1111/j.1755-148X.2010.00744.x.
Article
CAS
PubMed
Google Scholar
Platz A, Ringborg U, Hansson J. Hereditary cutaneous melanoma. Sem Canc Biol. 2000; 10(4):319–26. https://doi.org/10.1006/SCBI.2000.0149.
Article
CAS
Google Scholar
Li L, Blankenstein T. Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast-embryonic stem cell fusion. Nature Protoc. 2013; 8(8):1567–82. https://doi.org/10.1038/nprot.2013.093.
Article
CAS
Google Scholar
Robbins PF, Lu Y-C, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Med. 2013; 19(6):747–52. https://doi.org/10.1038/NM.3161.
Article
CAS
PubMed
Google Scholar
Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immun. 2009; 21(2):233–40. https://doi.org/10.1016/J.COI.2009.03.002.
Article
CAS
Google Scholar
Chandran SS, Somerville RPT, Yang JC, Sherry RM, Klebanoff CA, Goff SL, Wunderlich JR, Danforth DN, Zlott D, Paria BC, Sabesan AC, Srivastava AK, Xi L, Pham TH, Raffeld M, White DE, Toomey MA, Rosenberg SA, Kammula US. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. The Lancet Oncol. 2017; 18(6):792–802. https://doi.org/10.1016/S1470-20451730251-6.
Article
PubMed
Google Scholar
Tran E, Turcotte S, Gros A, Robbins PF, Lu Y-C, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR, Yang JC, Rosenberg SA. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Sci (NY). 2014; 344(6184):641–5. https://doi.org/10.1126/science.1251102.
Article
CAS
Google Scholar
Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell. 2015; 160(1-2):48–61. https://doi.org/10.1016/J.CELL.2014.12.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TBK, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Sci (NY). 2016; 351(6280):1463–9. https://doi.org/10.1126/science.aaf1490.
Article
CAS
Google Scholar
den Eynden JV, Jimenez-Sanchez A, Miller M, Lekholm EL. Lack of detectable neoantigen depletion in the untreated cancer genome. BioRxiv. 2018:478263. https://doi.org/10.1101/478263.
Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, Merchant AS, Mehta GU, Chichura A, Shalem O, Tran E, Eil R, Sukumar M, Guijarro EP, Day C-P, Robbins P, Feldman S, Merlino G, Zhang F, Restifo NP. Identification of essential genes for cancer immunotherapy. Nature. 2017; 548(7669):537–42. https://doi.org/10.1038/nature23477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strønen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N, Donia M, Böschen M-L, Lund-Johansen F, Olweus J, Schumacher TN. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Sci(NY). 2016; 352(6291):1337–41. https://doi.org/10.1126/science.aaf2288.
Google Scholar
Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2017; 27(1):38–58. https://doi.org/10.1038/cr.2016.154.
Article
CAS
PubMed
Google Scholar
Robbins PF, Kassim SH, Tran TLN, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee C-CR, Li YF, El-Gamil M, Rosenberg SA. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Canc Res: Official J Am Assoc Canc Res. 2015; 21(5):1019–27. https://doi.org/10.1158/1078-0432.CCR-14-2708.
Article
CAS
Google Scholar
van den Berg JH, Gomez-Eerland R, van de Wiel B, Hulshoff L, van den Broek D, Bins A, Tan HL, Harper JV, Hassan NJ, Jakobsen BK, Jorritsma A, Blank CU, Schumacher TNM, Haanen JBAG. Case Report of a Fatal Serious Adverse Event Upon Administration of T Cells Transduced With a MART-1-specific T-cell Receptor. Mole Therapy. 2015; 23(9):1541–50. https://doi.org/10.1038/MT.2015.60.
Article
CAS
Google Scholar
Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013; 122(6):863–71. https://doi.org/10.1182/blood-2013-03-490565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, Davies H, Stratton MR, Campbell PJ. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell. 2017; 171(5):1029–104121. https://doi.org/10.1016/J.CELL.2017.09.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmaier RJ, Charo J, Fabrizio D, Goldberg ME, Albacker LA, Pao W, Chmielecki J. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies. Genome Med. 2017; 9(1):16. https://doi.org/10.1186/s13073-017-0408-2.
Article
PubMed
PubMed Central
CAS
Google Scholar