Cai XL, Luo YY, Han XY, Ji LN. A meta-analysis of efficacy and safety of nateglinide in type 2 diabetes mellitus in Asia. Chin J Diabetes. 2012;21:913–7. https://doi.org/10.3969/j.issn.1006-6187.2013.10.014.
Article
CAS
Google Scholar
Cheng Y, Xiong QX, Liu Q, et al. A comparative study of the clinical efficacy of naglinide and acarbose in the treatment of type 2 diabetes mellitus. Modern Chin Drug Use. 2010;4:166–7. https://doi.org/10.3969/j.issn.1673-9523.2010.12.144.
Article
Google Scholar
Zhou S, Xiang Q, Mu G, et al. Effects of CYP2C8 and SLCO1B1 genetic polymorphisms on repaglinide pharmacokinetics: a systematic review and meta-analysis. Curr Drug Metab. 2019;20(4):266–74. https://doi.org/10.2174/1389200220666190111114146.
Article
CAS
PubMed
Google Scholar
Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action [published correction appears in Plos Biol. 2003 ;1(3):445]. PLoS Biol. 2003;1(1):E20. https://doi.org/10.1371/journal.pbio.0000020.
Article
PubMed
PubMed Central
Google Scholar
Saad MAE, Fahmy MIM, Al-Shorbagy M, et al. Nateglinide exerts neuroprotective effects via downregulation of HIF-1α/TIM-3 inflammatory pathway and promotion of caveolin-1 expression in the rat’s hippocampus subjected to focal cerebral ischemia/reperfusion injury. Inflammation. 2020;43(2):401–16. https://doi.org/10.1007/s10753-019-01154-3.
Article
CAS
PubMed
Google Scholar
Wagner N, Wagner KD. PPAR beta/delta and the hallmarks of cancer. Cells. 2020;9(5):1133. https://doi.org/10.3390/cells9051133.
Article
CAS
PubMed Central
Google Scholar
Cao M, Tong Y, Lv Q, et al. PPARδ activation rescues pancreatic β-cell line INS-1E from palmitate-induced endoplasmic reticulum stress through enhanced fatty acid oxidation. PPAR Res. 2012;2012: 680684. https://doi.org/10.1155/2012/680684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iglesias J, Barg S, Vallois D, et al. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice. J Clin Investig. 2012;122(11):4105–17. https://doi.org/10.1172/JCI42127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han L, Shen WJ, Bittner S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 2017;13(3):279–96. https://doi.org/10.2217/fca-2017-0019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bojic LA, Telford DE, Fullerton MD, et al. PPARδ activation attenuates hepatic steatosis in Ldlr−/− mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. J Lipid Res. 2014;55(7):1254–66. https://doi.org/10.1194/jlr.M046037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greene NP, Fluckey JD, Lambert BS, et al. Regulators of blood lipids and lipoproteins? PPARδ and AMPK, induced by exercise, are correlated with lipids and lipoproteins in overweight/obese men and women. Am J Physiol Endocrinol Metab. 2012;303(10):E1212–21. https://doi.org/10.1152/ajpendo.00309.2012.
Article
CAS
PubMed
Google Scholar
Tang L, Lü Q, Cao H, et al. PPARD rs2016520 polymorphism is associated with metabolic traits in a large population of Chinese adults. Gene. 2016;585(2):191–5. https://doi.org/10.1016/j.gene.2016.02.035.
Article
CAS
PubMed
Google Scholar
Hu C, Jia W, Fang Q, et al. Peroxisome proliferator-activated receptor (PPAR) delta genetic polymorphism and its association with insulin resistance index and fasting plasma glucose concentrations in Chinese subjects. Diabetes Med. 2006;23(12):1307–12. https://doi.org/10.1111/j.1464-5491.2006.02001.x.
Article
Google Scholar
Carrillo-Venzor MA, Erives-Anchondo NR, Moreno-González JG, et al. Pro12Ala PPAR-γ2 and +294T/C PPAR-δ polymorphisms and association with metabolic traits in teenagers from Northern Mexico. Genes (Basel). 2020;11(7):776. https://doi.org/10.3390/genes11070776.
Article
CAS
Google Scholar
Gheibi S, Ghasemi A. Insulin secretion: the nitric oxide controversy. EXCLI J. 2020;19:1227–45. https://doi.org/10.17179/excli2020-2711.
Article
PubMed
PubMed Central
Google Scholar
Shankar RR, Wu Y, Shen HQ, et al. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes. 2000;49(5):684–7. https://doi.org/10.2337/diabetes.49.5.684.
Article
CAS
PubMed
Google Scholar
Hao M, Head WS, Gunawardana SC, et al. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes. 2007;56(9):2328–38. https://doi.org/10.2337/db07-0056.
Article
CAS
PubMed
Google Scholar
Becker ML, Aarnoudse AJ, Newton-Cheh C, et al. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet Genom. 2008;18(7):591–7. https://doi.org/10.1097/FPC.0b013e328300e8c5.
Article
CAS
Google Scholar
Becker ML, Visser LE, Newton-Cheh C, et al. Genetic variation in the NOS1AP gene is associated with the incidence of diabetes mellitus in users of calcium channel blockers. Diabetologia. 2008;51(11):2138–40. https://doi.org/10.1007/s00125-008-1143-4.
Article
CAS
PubMed
Google Scholar
Hu C, Wang C, Zhang R, et al. Association of genetic variants of NOS1AP with type 2 diabetes in a Chinese population. Diabetologia. 2010;53(2):290–8. https://doi.org/10.1007/s00125-009-1594-2.
Article
CAS
PubMed
Google Scholar
Wratten NS, Memoli H, Huang Y, et al. Identification of a schizophrenia-associated functional noncoding variant in NOS1AP [published correction appears in Am J Psychiatry. 2010 Jul;167(7):870]. Am J Psychiatry. 2009;166(4):434–41. https://doi.org/10.1176/appi.ajp.2008.08081266.
Article
PubMed
PubMed Central
Google Scholar
Wang T, Wang XT, Lai R, et al. MTNR1B gene polymorphisms are associated with the therapeutic responses to repaglinide in Chinese patients with type 2 diabetes mellitus. Front Pharmacol. 2019;10:1318. https://doi.org/10.3389/fphar.2019.01318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong X, Xing X, Hong J, et al. Association of a type 2 diabetes genetic risk score with insulin secretion modulated by insulin sensitivity among Chinese Hans. Clin Genet. 2017;91(6):832–42. https://doi.org/10.1111/cge.12817.
Article
CAS
PubMed
Google Scholar
Bolen S, Wilson L, Vassy J, et al. Comparative effectiveness and safety of oral diabetes medications for adults with type 2 diabetes. Rockville, MD: Agency for Healthcare Research and Quality (US); 2007.
Google Scholar
Kawamori R, Kaku K, Hanafusa T, et al. Efficacy and safety of repaglinide vs nateglinide for treatment of Japanese patients with type 2 diabetes mellitus. J Diabetes Investig. 2012;3(3):302–8. https://doi.org/10.1111/j.2040-1124.2011.00188.x.
Article
CAS
PubMed
Google Scholar
Kim MK, Suk JH, Kwon MJ, et al. Nateglinide and acarbose for postprandial glucose control after optimizing fasting glucose with insulin glargine in patients with type 2 diabetes. Diabetes Res Clin Pract. 2011;92(3):322–8. https://doi.org/10.1016/j.diabres.2011.01.022.
Article
CAS
PubMed
Google Scholar
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev. 2019;35(3): e3109. https://doi.org/10.1002/dmrr.3109.
Article
PubMed
PubMed Central
Google Scholar
Cheng Y, Wang G, Zhang W, et al. Effect of CYP2C9 and SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of nateglinide in healthy Chinese male volunteers. Eur J Clin Pharmacol. 2013;69(3):407–13. https://doi.org/10.1007/s00228-012-1364-9.
Article
CAS
PubMed
Google Scholar
Niemi M, Backman JT, Kajosaari LI, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005;77(6):468–78. https://doi.org/10.1016/j.clpt.2005.01.018.
Article
CAS
PubMed
Google Scholar
Izumi S, Nozaki Y, Maeda K, et al. Investigation of the impact of substrate selection on in vitro organic anion transporting polypeptide 1B1 inhibition profiles for the prediction of drug-drug interactions. Drug Metab Dispos. 2015;43(2):235–47. https://doi.org/10.1124/dmd.114.059105.
Article
CAS
PubMed
Google Scholar
Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). Expert Opin Ther Pat. 2020;30(1):1–13. https://doi.org/10.1080/13543776.2020.1703952.
Article
CAS
PubMed
Google Scholar
Reilly SM, Lee CH. PPAR delta as a therapeutic target in metabolic disease. FEBS Lett. 2008;582(1):26–31. https://doi.org/10.1016/j.febslet.2007.11.040.
Article
CAS
PubMed
Google Scholar
Winzell MS, Wulff EM, Olsen GS, et al. Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice. Eur J Pharmacol. 2010;626(2–3):297–305. https://doi.org/10.1016/j.ejphar.2009.09.053.
Article
CAS
PubMed
Google Scholar
Icli B, Wu W, Ozdemir D, et al. MicroRNA-615-5p regulates angiogenesis and tissue repair by targeting AKT/eNOS (protein kinase B/endothelial nitric oxide synthase) signaling in endothelial cells. Arterioscler Thromb Vasc Biol. 2019;39(7):1458–74. https://doi.org/10.1161/ATVBAHA.119.312726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turini P, Thalmann S, Jayet PY, et al. Insulin resistance in mice lacking neuronal nitric oxide synthase is related to an alpha-adrenergic mechanism. Swiss Med Wkly. 2007;137(49–50):700–4.
CAS
PubMed
Google Scholar