Speakman JR, O'Rahilly S. Fat: an evolving issue. Dis Model Mech. 2012;5:569–73.
Article
CAS
Google Scholar
DeBoer MD. Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: a need for screening tools to target interventions. Nutrition. 2013;29:379–86.
Article
Google Scholar
Campion J, Milagro FI, Martinez JA. Individuality and epigenetics in obesity. Obes Rev. 2009;10:383–92.
Article
CAS
Google Scholar
van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS, Members of epi S. Epigenetics and human obesity. Int J Obes. 2015;39:85–97.
Article
Google Scholar
Fan S, Zhang X. CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun. 2009;383:421–5.
Article
CAS
Google Scholar
Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update. 2015;21:249–61.
Article
CAS
Google Scholar
Zhang P, Chu T, Dedousis N, Mantell BS, Sipula I, Li L, Bunce KD, et al. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet. Mol Metab. 2017;6:327–39.
Article
CAS
Google Scholar
Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, et al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet. 2015;24:4464–79.
Article
CAS
Google Scholar
Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20110337.
Article
Google Scholar
Kirchner H, Sinha I, Gao H, Ruby MA, Schonke M, et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab. 2016;5:171–83.
Article
CAS
Google Scholar
Hao Z, Mumphrey MB, Morrison CD, Munzberg H, Berthoud HR. Does gastric bypass surgery change body weight set point? Int J Obes Suppl. 2016;6:S37–43.
Article
CAS
Google Scholar
Schauer PR, Nor Hanipah Z, Rubino F. Metabolic surgery for treating type 2 diabetes mellitus: now supported by the world's leading diabetes organizations. Cleve Clin J Med. 2017;84:S47–56.
Article
Google Scholar
Falken Y, Hellstrom PM, Holst JJ, Naslund E. Changes in glucose homeostasis after roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab. 2011;96:2227–35.
Article
CAS
Google Scholar
Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.
Article
Google Scholar
Quarta C, Schneider R, Tschop MH. Epigenetic ON/OFF switches for obesity. Cell. 2016;164:341–2.
Article
CAS
Google Scholar
van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics. 2015;7:66.
Article
Google Scholar
Crujeiras AB, Campion J, Diaz-Lagares A, Milagro FI, Goyenechea E, Abete I, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept R. 2013;186(1–6).
Article
CAS
Google Scholar
Sala P, de Miranda Torrinhas RSM, Fonseca DC, Ravacci GR, Waitzberg DL, Giannella-Neto D. Tissue-specific methylation profile in obese patients with type 2 diabetes before and after Roux-en-Y gastric bypass. Diabetol Metab Syndr. 2017;22;9:15.
Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, Perusse L, et al. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr. 2010;91:309–20.
Article
CAS
Google Scholar
de Oliveira BAP, de Souza Pinhel MA, Nicoletti CF, de Oliveira CC, Quinhoneiro DCG, Noronha NY, et al. UCP2 and PLIN1 expression affects the resting metabolic rate and weight loss on obese patients. Obes Surg. 2017;27:343–8.
Article
Google Scholar
Pinhel MAS, Noronha NY, Nicoletti CF, de Oliveira BAP, Cortes-Oliveira C, Pinhanelli VC, et al. Changes in global transcriptional profiling of women following obesity surgery bypass. Obes Surg. 2018;28:176–86.
Article
Google Scholar
Nicoletti CF, de Oliveira AP, Brochado MJ, de Oliveira BP, Pinhel MA, Marchini JS, et al. UCP1 -3826 a>G polymorphism affects weight, fat mass, and risk of type 2 diabetes mellitus in grade III obese patients. Nutrition. 2016;32:83–7.
Article
CAS
Google Scholar
Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702.
Article
CAS
Google Scholar
Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S, et al. DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis. 2013;34:102–8.
Article
CAS
Google Scholar
Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8.
Article
CAS
Google Scholar
Crujeiras AB, Diaz-Lagares A, Sandoval J, Milagro FI, Navas-Carretero S, Carreira MC, et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients. Sci Rep. 2017;7:41903.
Article
CAS
Google Scholar
Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet. 2015;24(13):3792–813.
PubMed
Google Scholar
Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990–8.
Article
CAS
Google Scholar
Nicoletti CF, de Oliveira BA, de Pinhel MA, Donati B, Marchini JS, Salgado Junior W, et al. Influence of excess weight loss and weight regain on biochemical indicators during a 4-year follow-up after roux-en-Y gastric bypass. Obes Surg. 2015;25:279–84.
Article
Google Scholar
Pinhel MA, Nicoletti CF, de Oliveira BA, Chaves RC, Parreiras LT, Sivieri T, et al. Weight loss and metabolic outcomes 12 months after roux-En-Y gastric bypass in a population of southeastern Brazil. Nutr Hosp. 2015;32:1017–21.
PubMed
Google Scholar
Nilsson EK, Ernst B, Voisin S, Almen MS, Benedict C, Mwinyi J, et al. Roux-en Y gastric bypass surgery induces genome-wide promoter-specific changes in DNA methylation in whole blood of obese patients. PLoS One. 2015;10:e0115186.
Article
Google Scholar
Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al., An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss, Genome Biol 2015; 16: 18.
Article
CAS
Google Scholar
Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Ryden M, et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes. 2015;39:910–9.
Article
CAS
Google Scholar
Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3:1020–7.
Article
CAS
Google Scholar
Kawai M, Mushiake S, Bessho K, Murakami M, Namba N, Kokubu C, et al. Wnt/Lrp/beta-catenin signaling suppresses adipogenesis by inhibiting mutual activation of PPARgamma and C/EBPalpha. Biochem Biophys Res Commun. 2007;363:276–82.
Article
CAS
Google Scholar
Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab. 2009;297:E999–E1003.
Article
CAS
Google Scholar
Wang X, Zhao X, Gao X, Mei Y, Wu M. A new role of p53 in regulating lipid metabolism. J Mol Cell Biol. 2013;5:147–50.
Article
Google Scholar
Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15:1082–7.
Article
CAS
Google Scholar
Morcillo S, Macías-González M, Tinahones FJ. The effect of metabolic and bariatric surgery on DNA methylation patterns. Curr Atheroscler Rep. 2017;19(10):40.
Article
Google Scholar
Garruti G, Di Ciaula A, Wang HH, Wang DQH, Portincasa P. Cross-talk between bile acids and gastro-intestinal and thermogenic hormones: clues from bariatric surgery. Annal of Hepatol. 2017;16 (Suppl. 1:s68–82.
CAS
Google Scholar
Martín-Núñez GM, Cabrera-Mulero A, Alcaide-Torres J, García-Fuentes E, Tinahones FJ, Morcillo S. No effect of different bariatric surgery procedures on LINE-1 DNA methylation in diabetic and nondiabetic morbidly obese patients. Surg Obes Relat Dis. 2017;13(3):442–50.
Article
Google Scholar
Coppedè F, Seghieri M, Stoccoro A, Santini E, Giannini L, Rossi C, et al. DNA methylation of genes regulating appetite and prediction of weight loss after bariatric surgery in obese individuals. J Endocrinol Investig. 2019;42(1):37–44.
Article
Google Scholar
Nicoletti CF, Nonino CB, de Oliveira BA, Pinhel MA, Mansego ML, Milagro FI, et al. DNA methylation and Hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg. 2016;26(3):603–11.
Article
Google Scholar
Paran CW, Verkerke AR, Heden TD, Park S, Zou K, Lawson HA, et al. Reduced efficiency of sarcolipin-dependent respiration in myocytes from humans with severe obesity. Obesity (Silver Spring). 2015;23:1440–9.
Article
CAS
Google Scholar
Nicoletti CF, Cortes-Oliveira C, Pinhel MAS, Nonino CB. Bariatric surgery and precision nutrition. Nutrients. 2017;9:974.
Article
Google Scholar