Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.
Article
CAS
PubMed
Google Scholar
Yoshimura K, Sato K, Aoi N, Kurita M, Inoue K, Suga H, et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatologic Surg. 2008;34:1178–85.
CAS
Google Scholar
Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, Sato K, et al. Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J. 2010;16:169–75.
Article
PubMed
Google Scholar
Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, et al. Cell-assisted lipotransfer: Supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12:3375–82.
Article
CAS
PubMed
Google Scholar
Masuda T, Furue M, Matsuda T. Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng. 2004;10:1672–83.
Article
CAS
PubMed
Google Scholar
Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg. 2006;118:121S–8S.
Article
CAS
PubMed
Google Scholar
Todaro GJ, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963;17:299–313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton GR, Guan Y, Nagarajan R, McGehee Jr RE. Microarray analysis of gene expression during early adipocyte differentiation. Gene. 2002;293:21–31.
Article
CAS
PubMed
Google Scholar
Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, et al. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology. 2002;143:2106–18.
CAS
PubMed
Google Scholar
Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130:3122S–6S.
CAS
PubMed
Google Scholar
Christy RJ, Yang VW, Ntambi JM, Geiman DE, Landschulz WH, Friedman AD, et al. Differentiation-induced gene expression in 3 T3-L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev. 1989;3:1323–35.
Article
CAS
PubMed
Google Scholar
Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem. 2001;276:34167–74.
Article
CAS
PubMed
Google Scholar
Lopez IP, Marti A, Milagro FI, Zulet MA, Moreno-Aliaga MJ, Martinez JA, et al. DNA microarray analysis of gene differentially expressed in diet-induced (Cafeteria) obese rats. Obes Res. 2003;11:188–94.
Article
CAS
PubMed
Google Scholar
Labrecque B, Mathieu O, Bordignon V, Murphy BD, Palin MF. Identification of differentially expressed genes in a porcine in vivo model of adipogenesis using suppression subtractive hybridization. Comp Biochem Physiol Part D genomics Proteomics. 2009;4:32–44.
Article
PubMed
Google Scholar
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urs S, Smith C, Campbell B, Saxton AM, Taylor J, Zhang B, et al. Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J Nutr. 2004;134:762–70.
CAS
PubMed
Google Scholar
DeLany JP, Floyd ZE, Zvonic S, Smith A, Gravois A, Reiners E, et al. Proteomic analysis of primary cultures of human adipose-derived stem cells: modulation by adipogenesis. Mol Cell Proteomics. 2005;4:731–40.
Article
CAS
PubMed
Google Scholar
Monaco E, Bionaz M, Rodriguez-Zas S, Hurley WL, Wheeler MB. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One. 2012;7(3):e32481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Wu X, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, et al. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy. 2010;12:538–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Archer KJ, Dumur CI, Joel SE, Ramakrishnan V. Assessing quality of hydridized RNA in Affymetrix Gene Chip experiments. Biostatistics. 2006;7:198–212.
Article
PubMed
Google Scholar
Satish L, LaFramboise WA, Johnson S, Vi L, Njarlangattil A, Raykha C, et al. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren’s contracture. BMC Med Genomics. 2012;5:15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Zimmerlin L, Marra KG, Donnenberg VS, Donnenberg AD, Rubin JP. Adipogenic potential of adipose stem cell subpopulations. Plast Reconstr Surg. 2011;128:663–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker GE, Pederson BA, Obayashi M, Schroeder JM, Harris RA, Roach PJ. Gene expression profiling of mice with genetically modified muscle glycogen content. Biochem J. 2006;395:137–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang L, Brackeva B, Ling Z, Kramer G, Aerts JM, Schuit F, et al. Potential of protein phosphatase inhibitor 1 as biomarker of pancreatic β-cell injury in vitro and in vivo. Diabetes. 2013;62:2683–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutley L, Shurety W, Newell F, McGeary R, Pelton N, Grant J, et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes. 2004;53:3097–106.
Article
CAS
PubMed
Google Scholar
Jonker JW, Suh JM, Atkins AR, Ahmadian M, Li P, Whyte J, et al. A PPARγ-FGF1 axis is required for adaptive adipose remodeling and metabolic homeostasis. Nature. 2012;485:391–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo Y, Cai J, Liu Y, Xue H, Chrest FJ, Wersto RP, et al. Microarray analysis of selected genes in neural stem and progenitor cells. J Neurochem. 2002;83:1481–97.
Article
CAS
PubMed
Google Scholar
Hennessey JA, Wei EQ, Pitt GS. Fibroblast growth factor homologous factors modulate cardiac calcium channels. Circ Res. 2013;113:381–8.
Article
CAS
PubMed
Google Scholar
Zhuang Z, Jian P, Longjiang L, Bo H, Wenlin X. Oral cancer cells with different potential of lymphatic metastasis displayed distinct biologic behaviors and gene expression profiles. J Oral Pathol Med. 2010;39:168–75.
Article
PubMed
Google Scholar
Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe. 2007;2:96–105.
Article
CAS
PubMed
Google Scholar
Hinson ER, Cresswell P. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic alpha-helix. Proc Natl Acad Sci U S A. 2009;106:20452–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dogan A, Lasch P, Neuschl C, Millrose MK, Alberts R, Schughart K, et al. ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics. 2013;14:386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kudo A. Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci. 2011;68:3201–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norris RA, Moreno-Rodriguez R, Hoffman S, Markwald RR. The many facets of the matricellular protein periostin during cardiac development, remodeling, and pathophysiology. J Cell Commun Signal. 2009;3:275–86.
Article
PubMed
PubMed Central
Google Scholar
Ruan K, Bao S, Ouyang G. The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci. 2009;66:2219–30.
Article
CAS
PubMed
Google Scholar
Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, et al. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren's disease and adjacent palmar fascia cells. Exp Cell Res. 2009;315:3574–86.
Article
CAS
PubMed
PubMed Central
Google Scholar