Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20.
Article
PubMed
Google Scholar
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal R, Gupta SK, Agarwal P, Saxena R, Agrawal SS. Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol. 2009;57(4):257.
Article
PubMed
PubMed Central
Google Scholar
Fingert JH, Robin AL, Stone JL, Roos BR, Davis LK, Scheetz TE, Bennett SR, Wassink TH, Kwon YH, Alward WL, Mullins RF. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet. 2011;20(12):2482–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakurada Y, Mabuchi F. Genetic risk factors for glaucoma and exfoliation syndrome identified by genome-wide association studies. Curr Neuropharmacol. 2018;16(7):933–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hannon GJBD. p15INK4B is a potential effector of TGF-f induced cell cycle arrest. Nature. 1994;371:257–61.
Article
CAS
PubMed
Google Scholar
Gil J, Peters G. Regulation of the INK4b–ARF–INK4atumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7(9):667.
Article
CAS
PubMed
Google Scholar
Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, Danoy P, Casson R, Viswanathan AC, Liu JZ, Landers J. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011;43(6):574.
Article
CAS
PubMed
Google Scholar
Fan BJ, Wang DY, Pasquale LR, Haines JL, Wiggs JL. Genetic variants associated with optic nerve vertical cup-to-disc ratio are risk factors for primary open angle glaucoma in a US Caucasian population. Investig Ophthalmol Vis Sci. 2011;52(3):1788–92.
Article
Google Scholar
Ramdas WD, van Koolwijk LM, Lemij HG, Pasutto F, Cree AJ, Thorleifsson G, Janssen SF, Jacoline TB, Amin N, Rivadeneira F, Wolfs RC. Common genetic variants associated with open-angle glaucoma. Hum Mol Genet. 2011;20(12):2464–71.
Article
CAS
PubMed
Google Scholar
Ramdas WD, Van Koolwijk LM, Ikram MK, Jansonius NM, de Jong PT, Bergen AA, Isaacs A, Amin N, Aulchenko YS, Wolfs RC, Hofman A. A genome-wide association study of optic disc parameters. PLoS Genet. 2010;6(6):e1000978.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burdon KP, Mitchell P, Lee A, Healey PR, White AJ, Rochtchina E, Thomas PB, Wang JJ, Craig JE. Association of open-angle glaucoma loci with incident glaucoma in the Blue Mountains Eye Study. Am J Ophthalmol. 2015;159(1):31–6.
Article
PubMed
PubMed Central
Google Scholar
Nakano M, Ikeda Y, Tokuda Y, Fuwa M, Omi N, Ueno M, Imai K, Adachi H, Kageyama M, Mori K, Kinoshita S. Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS ONE. 2012;7(3):e33389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osman W, Low SK, Takahashi A, Kubo M, Nakamura Y. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012;21(12):2836–42.
Article
CAS
PubMed
Google Scholar
Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, Budenz DL. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8(4):e1002654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao D, Jiao X, Liu X, Hennis A, Leske MC, Nemesure B, Hejtmancik JF. CDKN2B polymorphism is associated with primary open-angle glaucoma (POAG) in the Afro-Caribbean population of Barbados, West Indies. PLoS ONE. 2012;7(6):e39278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasquale LR, Loomis SJ, Kang JH, Yaspan BL, Abdrabou W, Budenz DL, Chen TC, DelBono E, Friedman DS, Gaasterland D, Gaasterland T. CDKN2B-AS1 genotype–glaucoma feature correlations in primary open-angle glaucoma patients from the United States. Am J Ophthalmol. 2013;155(2):342–53.
Article
CAS
PubMed
Google Scholar
Chen Y, Hughes G, Chen X, Qian S, Cao W, Wang L, Wang M, Sun X. Genetic variants associated with different risks for high tension glaucoma and normal tension glaucoma in a Chinese population. Investig Ophthalmol Vis Sci. 2015;56(4):2595–600.
Article
CAS
Google Scholar
Li Z, Allingham RR, Nakano M, Jia L, Chen Y, Ikeda Y, Mani B, Chen LJ, Kee C, Garway-Heath DF, Sripriya S. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. 2015;24(13):3880–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abu-Amero KK, Kondkar AA, Mousa A, Almobarak FA, Alawad A, Altuwaijri S, Sultan T, Azad TA, Al-Obeidan SA. Analysis of Cyclin-dependent Kinase inhibitor-2B rs1063192 polymorphism in Saudi patients with primary open-Angle glaucoma. Genet Test Mol Biomark. 2016;20(10):637–41.
Article
CAS
Google Scholar
Nannini DR, Torres M, Chen YD, Taylor KD, Rotter JI, Varma R, Gao X. A genome-wide association study of vertical cup-disc ratio in a Latino population. Invest Ophthalmol Vis Sci. 2017;58(1):87–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshikawa M, Nakanishi H, Yamashiro K, Miyake M, Akagi T, Gotoh N, Ikeda HO, Suda K, Yamada H, Hasegawa T, Iida Y. Association of glaucoma-susceptible genes to regional circumpapillary retinal nerve fiber layer thickness and visual field defects. Investig Ophthalmol Vis Sci. 2017;58(5):2510–9.
Article
CAS
Google Scholar
Gao S, Jakobs TC. Mice homozygous for a deletion in the glaucoma susceptibility locus INK4 show increased vulnerability of retinal ganglion cells to elevated intraocular pressure. Am J Clin Pathol. 2016;186(4):985–1005.
Article
CAS
Google Scholar
Ghanbari M, Franco OH, de Looper HW, Hofman A, Erkeland SJ, Dehghan A. Genetic variations in microRNA-binding sites affect microRNA-mediated regulation of several genes associated with cardio-metabolic phenotypes. Circ Cardiovasc Genet. 2015;8(3):473–86.
Article
CAS
PubMed
Google Scholar
Fuchshofer R, Tamm ER. The role of TGF-β in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res. 2012;347(1):279–90.
Article
CAS
PubMed
Google Scholar
Vishal M, Sharma A, Kaurani L, Chakraborty S, Ray J, Sen A, Mukhopadhyay A, Ray K. Evaluation of genetic association of the INK4 locus with primary open angle glaucoma in East Indian population. Sci Rep. 2014;4:5115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philomenadin FS, Asokan R, Viswanathan N, George R, Lingam V, Sarangapani S. Genetic association of SNPs near ATOH7, CARD10, CDKN2B, CDC7 and SIX1/SIX6 with the endophenotypes of primary open angle glaucoma in Indian population. PLoS ONE. 2015;10(3):e0119703.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adeli K, Ogbonna G. Rapid purification of human DNA from whole blood for potential application in clinical chemistry laboratories. Clin Chem. 1990;36:261–4.
Article
CAS
PubMed
Google Scholar
Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non randomised studies in meta-analyses. Ott. Hosp. Res. Inst. 2014. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 29 Sept 2020.
Schaid DJ, Jacobsen SJ. Blased Tests of Association: comparisons of allele frequencies when departing from Hardy–Weinberg proportions. Am J Epidemiol. 1999;149(8):706–11.
Article
CAS
PubMed
Google Scholar
Hartl D, Clarke A. Principles of population genetics theory. Sunderland: Sinauer Associates; 1989.
Google Scholar
Sasieni PD. From genotypes to genes: doubling the sample size. Biometrics. 1997;1:1253–61.
Article
Google Scholar
Latres E, Malumbres M, Sotillo R, Martín J, Ortega S, Martín-Caballero J, Flores JM, Cordón-Cardo C, Barbacid M. Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 2000;19(13):3496–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuxe J, Akusjärvi G, Goike HM, Roos G, Collins VP, Pettersson RF. Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ Mol Biol J Am Assoc Cancer Res. 2000;11(7):373–84.
CAS
Google Scholar
Takamoto M, Kaburaki T, Mabuchi A, Araie M, Amano S, Aihara M, Tomidokoro A, Iwase A, Mabuchi F, Kashiwagi K, Shirato S. Common variants on chromosome 9p21 are associated with normal tension glaucoma. PLoS ONE. 2012;7(7):e40107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiggs JL, Hauser MA, Abdrabou W, Allingham RR, Budenz DL, DelBono E, Friedman DS, Kang JH, Gaasterland D, Gaasterland T, Lee RK. The NEIGHBOR consortium primary open angle glaucoma genome-wide association study: rationale, study design and clinical variables. J Glaucoma. 2013;22(7):517.
Article
PubMed
PubMed Central
Google Scholar
Vajaranant TS, Nayak S, Wilensky JT, Joslin CE. Gender and glaucoma: what we know and what we need to know. Curr Opin Ophthalmol. 2010;21(2):91.
Article
PubMed
PubMed Central
Google Scholar
Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. Association between genetic variants associated with vertical cup-to-disc ratio and phenotypic features of primary open-angle glaucoma. Ophthalmology. 2012;119(9):1819–25.
Article
PubMed
Google Scholar
Dimasi DP, Burdon KP, Hewitt AW, Fitzgerald J, Wang JJ, Healey PR, Mitchell P, Mackey DA, Craig JE. Genetic investigation into the endophenotypic status of central corneal thickness and optic disc parameters in relation to open-angle glaucoma. Am J Ophthalmol. 2012;154(5):833–42.
Article
PubMed
Google Scholar
Ng SK, Burdon KP, Fitzgerald JT, Zhou T, Fogarty R, Souzeau E, Landers J, Mills RA, Casson RJ, Ridge B, Graham SL. Genetic association at the 9p21 glaucoma locus contributes to sex bias in normal-tension glaucoma. Investig Ophthalmol Vis Sci. 2016;57(7):3416–21.
Article
CAS
Google Scholar
Liu Y, Hauser MA, Akafo SK, Qin X, Miura S, Gibson JR, Wheeler J, Gaasterland DE, Challa P, Herndon LW, Ritch R. Investigation of known genetic risk factors for primary open angle glaucoma in two populations of African ancestry. Investig Ophthalmol Vis Sci. 2013;54(9):6248–54.
Article
Google Scholar
Shiga Y, Nishiguchi KM, Kawai Y, Kojima K, Sato K, Fujita K, Takahashi M, Omodaka K, Araie M, Kashiwagi K, Aihara M. Genetic analysis of Japanese primary open-angle glaucoma patients and clinical characterization of risk alleles near CDKN2B-AS1, SIX6 and GAS7. PLoS ONE. 2017;12(12):e0186678.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ozel AB, Moroi SE, Reed DM, Nika M, Schmidt CM, Akbari S, Scott K, Rozsa F, Pawar H, Musch DC, Lichter PR. Genome-wide association study and meta-analysis of intraocular pressure. Hum Genet. 2014;133(1):41–57.
Article
CAS
PubMed
Google Scholar
Talluri R, Wang J, Shete S. Calculation of exact p-values when SNPs are tested using multiple genetic models. BMC Genet. 2014;15(1):75.
Article
PubMed
PubMed Central
Google Scholar
Nunes HF, Oliveira MB, Vasconcellos JPC, Costa VP, de MeloMB. Investigation of rs4236601 and rs4977756 SNPs in a primary open-angle glaucoma Brazilian population; (Abstract no. 2291, Page no. 217). Presented at the 62nd Annual Meeting of The American Society of Human Genetics, November 8, 2012, San Francisco, California.
Micheal S, Ayub H, Khan MI, Bakker B, Schoenmaker-Koller FE, Ali M, Akhtar F, Khan WA, Qamar R, den Hollander AI. Association of known common genetic variants with primary open angle, primary angle closure, and pseudoexfoliation glaucoma in Pakistani cohorts. Mol Vis. 2014;20:1471.
CAS
PubMed
PubMed Central
Google Scholar
Hu Z, He C. CDKN2B gene rs1063192 polymorphism decreases the risk of glaucoma. Oncotarget. 2017;8(13):21167.
Article
PubMed
PubMed Central
Google Scholar