Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000;26(2):163–75.
Article
CAS
PubMed
Google Scholar
Love-Gregory LD, Wasson J, Ma J, Jin CH, Glaser B, Suarez BK, et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4 alpha gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an ashkenazijewish population. Diabetes. 2004;53(4):1134–40.
Article
CAS
PubMed
Google Scholar
Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet. 2005;37(8):863–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013;4(4):114–23.
Article
PubMed
PubMed Central
Google Scholar
Sun X, Yu W, Hu C. Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. Biomed Res Int. 2014;2014:926713.
Article
PubMed
PubMed Central
Google Scholar
Reddy BM, Pranavchand R, Latheef SAA. Overview of genomics and post-genomics research on type 2 diabetes mellitus: future perspectives and a framework for further studies. J Biosci. 2019; 44(1). pii: 21. Review
Stettler C, Christ E, Diem P (eds). Novelties in diabetes. Endocr Dev Basel, Karger 2016, vol 31, pp 203–220.
Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, et al. ICMR–INDIAB Collaborative Study Group. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 2017; 5(8):585–596.
Bhat A, Koul A, Rai E, Sharma S, Dhar MK, Bamezai RN. PGC-1alpha Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: a replicate case-control study. Hum Genet. 2007;121(5):609–14.
Article
PubMed
Google Scholar
Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, Wander GS, et al. Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet. 2008;9:59.
Article
PubMed
PubMed Central
Google Scholar
Yajnik CS, Janipalli CS, Bhaskar S, et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia. 2009;52:247–52.
Article
CAS
PubMed
Google Scholar
Abate N, Chandalia M, Satija P, Adams-Huet B, Grundy SM, Sandeep S, et al. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes. 2005;54(4):1207–13.
Article
CAS
PubMed
Google Scholar
Radha V, Vimaleswaran KS, Babu HN, Abate N, Chandalia M, Satija P, et al. Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: evidence for heterogeneity. Diabetes Care. 2006;29(5):1046–51.
Article
CAS
PubMed
Google Scholar
Dasgupta S, Reddy BM. Present status of understanding on the genetic etiology of polycystic ovary syndrome. J Postgrad Med. 2008;54:115–25.
Article
CAS
PubMed
Google Scholar
Aruna M, Nagaraja T, Andal S, Tarakeswari S, Govardhan A, Thangaraj A, et al. Novel alleles of HLA-DQ and DR loci show association with recurrent miscarriages among South Indian Women. Hum Reprod. 2011;26:765–74.
Article
CAS
PubMed
Google Scholar
Uma Jyothi K, Reddy BM. Gene-gene and gene-environment interactions in the etiology of type 2 diabetes mellitus in the population of Hyderabad. India MetaGene. 2015;5:9–20.
Google Scholar
Saxena R, Saleheen D, Been LF, Garavito ML, Braun T, Bjonnes A, et al. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes. 2013;62(5):1746–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabassum R, Chauhan G, Dwivedi OP, Mahajan A, Jaiswal A, Kaur I, et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes. 2013;62(3):977–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uma Jyothi K, Jayaraj M, Subburaj KS, Prasad KJ, Kumuda I, Mohan Reddy B. Association of TCF7L2 gene polymorphisms with T2DM in the population of Hyderabad, India. PLoS ONE. 2013;8(4):e60212.
Article
PubMed
PubMed Central
Google Scholar
Uma Jyothi K, Jayaraj M, Subburaj KS, Prasad KJ, Kumuda I, Mohan RB. No detectable association of IGF2BP2 and SLC30A8 genes with type 2 diabetes in the population of Hyderabad. India MetaGene. 2013;1:15–23.
Google Scholar
Uma Jyothi K, Jayaraj M, Subburaj KS, Kumuda I, Prasad KJ, Mohan RB. Association of IRS-1, CAPN10 and PPARG gene polymorphisms with T2DM in the high risk population of Hyderabad, India. J Diabetes. 2014;6:564–73.
Article
Google Scholar
Kommoju UJ, Samy SK, Maruda J, Irgam K, Kotla JP, Velaga L, et al. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India. Indian J Med Res. 2016;143:455–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganasyam SR, Rao TB, Murthy YS, Jyothy A, Sujatha M. Association of estrogen receptor-α gene & metallothionein-1 gene polymorphisms in type 2 diabetic women of Andhra Pradesh. Indian J ClinBiochem. 2012;27(1):69–73.
CAS
Google Scholar
Khan IA, Poornima S, Jahan P, Rao P, Hasan Q. Type 2 diabetes mellitus and the association of candidate genes in Asian Indian population from Hyderabad, India. J ClinDiagn Res. 2015;9(11):GC01-5.
Google Scholar
Rao DK, Murthy DK, Shaik NS, Banaganapalli B, Konda K, Rao HP, et al. Distribution of CYP2C8 and CYP2C9 amino acid substitution alleles in South Indian diabetes patients: a genotypic and computational protein phenotype study. ClinExpPharmacol Physiol. 2017;44(12):1171–9.
CAS
Google Scholar
Vimaleswaran KS, Radha V, Ghosh S, Majumder PP, Deepa R, Babu HNS, et al. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) gene polymorphisms and their relationship to type 2 diabetes in Asian Indians. Diabet Med. 2005;22:1516–21.
Article
CAS
PubMed
Google Scholar
Bodhini D, Radha V, Dhar M, Narayani N, Mohan V. The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism. 2007;56(9):1174–8.
Article
CAS
PubMed
Google Scholar
Chandak GR, Janipalli CS, Bhaskar S, Kulkarni SR, Mohankrishna P, Hattersley AT, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia. 2007;50(1):63–7.
Article
CAS
Google Scholar
Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes. 2010;59(8):2068–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali S, Chopra R, Manvati S, Singh YP, Kaul N, Behura A, et al. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS ONE. 2013;8(3):e58881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phani NM, Adhikari P, Nagri SK, D’Souza SC, Satyamoorthy K, Rai PS. Replication and relevance of multiple susceptibility loci discovered from genome wide association studies for type 2 diabetes in an Indian population. PLoS ONE. 2016;11(6):e0157364.
Article
PubMed
PubMed Central
Google Scholar
Rizvi S, Raza ST, Mahdi F, Singh SP, Rajput M, Rahman Q. Genetic polymorphisms in KCNJ11 (E23K, rs5219) and SDF-1β (G801A, rs1801157) genes are associated with the risk of type 2 diabetes mellitus. Br J Biomed Sci. 2018;75(3):139–44.
Article
CAS
PubMed
Google Scholar
Ovalle F, Azziz R. Insulin resistance, polycystic ovary syndrome, and type 2diabetes mellitus. FertilSteril. 2002;77:1095–105.
Google Scholar
Gambineri A, Patton L, Altieri P, Pagotto U, Pizzi C, Manzoli L, et al. Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective study. Diabetes. 2012;61(9):2369–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Che Y, Cao Y, Wu X, Sun H, Liang F, et al. Polymorphisms of TCF7L2 and HHEX genes in Chinese women with polycystic Ovary Syndrome. J Assist Reprod Genet. 2010;27(1):23–8.
Article
CAS
PubMed
Google Scholar
Kim JJ, Choi YM, Cho YM, Hong MA, Chae SJ, Hwang KR, et al. Polycystic ovary syndrome is not associated with Polymorphisms of the TCF7L2, CDKAL1, HHEX, KCNJ11, FTO and SLC30A8 genes. Clin Endocrinol (Oxf). 2012;77:439–45.
Article
CAS
Google Scholar
Ewens KG, Jones MR, Ankener W, Stewart DR, Urbanek M, Dunaif A, et al. Type 2 diabetes susceptibility single-nucleotide polymorphisms are not associated with polycystic ovary syndrome. Fertil Steril. 2011;95(8):2538-2541.e1-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy BM, Kommoju UJ, Dasgupta S, Rayabarapu P. Association of type 2 diabetes mellitus genes in polycystic ovary syndrome aetiology among women from southern India. Indian J Med Res. 2016;144(3):400–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irgam K, Reddy BM, Annamaneni S, Rayabarapu P. The genetic susceptibility profile of the South Indian women with polycystic ovary syndrome and the universality of the lack of association of type 2 diabetes genes. Gene. 2019;701:113–20.
Article
CAS
PubMed
Google Scholar
Reddy BM, Naidu VM, Madhavi VK, Thangaraj LK, Kumar V, Langstieh BT, et al. Microsatellite diversity in Andhra Pradesh, India: genetic stratification versus social stratification. Hum Biol. 2005;77:803–23.
Article
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falush D, Stephens M, Pritchard JK. Inferences of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sambrook J, Fritschi EF, Maniatis T. Molecular cloning: a laboratory manual. New York: ColdSpring Harbor Laboratory Press; 1989.
Google Scholar
Goodarzi MO, Maher JF, Cui J, Guo X, Taylor KD, Azziz R. FEM1A and FEM1B: novel candidate genes for polycystic ovary syndrome. Hum Reprod. 2008;23(12):2842–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewens KG, Stewart DR, Ankener W, Urbanek M, McAllister JM, Chen C, et al. Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab. 2010;95:2306–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science. 2002;296(5576):2225–9.
Article
CAS
PubMed
Google Scholar
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278–316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gambineri A, Pelusi C. Sex hormones, obesity and type 2 diabetes: is there a link? Endocr Connect. 2019;8(1):R1–9.
Article
CAS
PubMed
Google Scholar
Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307:373–5.
Article
CAS
PubMed
Google Scholar
Sheng T, Yang K. Adiponectin and its association with insulin resistance and type 2 diabetes. J Genet Genomics. 2008;35:321–6.
Article
CAS
PubMed
Google Scholar
Biswas D, Vettriselvi V, Choudhury J, Jothimalar R. Adiponectin gene polymorphism and its association with type 2 diabetes mellitus. Indian J Clin Biochem. 2011;26(2):172–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002;51(2):536–40.
Article
CAS
PubMed
Google Scholar
Toy WC, Liu JJ, Cheng AKS, Tan CSH, Lau DP, Sheng Wong MD, et al. Adiponectin gene polymorphisms and type 2 diabetes among Singaporean Chinese adults. J Diabetes Metab. 2011;2:152.
Article
CAS
Google Scholar
Tu Y, Yu Q, Fan G, et al. Assessment of type 2 diabetes risk conferred by SNPs rs2241766 and rs1501299 in the ADIPOQ gene, a case/control study combined with meta-analyses. Mol Cell Endocrinol. 2014;396:1–9.
Article
CAS
PubMed
Google Scholar
Hussain MK, Deli FA, Algenabi AHA, Abdul-Rudha KH. Adiponectin gene polymorphisms as a predictor for development of type 2 diabetes mellitus in Iraqi population. Gene. 2018;662:118–22.
Article
CAS
PubMed
Google Scholar
Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3:285–98.
Article
CAS
PubMed
Google Scholar
Zhang L, Qin Y, Liang D, Li L, Liang Y, Chen L, et al. Association of polymorphisms in LEPR with type 2 diabetes and related metabolic traits in a Chinese population. Lipids Health Dis. 2018;17(1):2.
Article
PubMed
PubMed Central
Google Scholar
Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yajnik CS, Ganpule-Rao AV. The obesity-diabetes association: what is different in indians? Int J Low Extrem Wounds. 2010;9:113–5.
Article
CAS
PubMed
Google Scholar
Sabarneh A, Ereqat S, Cauchi S, AbuShamma O, Abdelhafez M, Ibrahim M, et al. Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine. BMC Med Genet. 2018;19(1):156.
Article
PubMed
PubMed Central
Google Scholar
Ramya K, Radha V, Ghosh S, Majumder PP, Mohan V. Genetic variations in the FTO gene are associated with type 2 diabetes and obesity in south Indians (CURES-79). Diabetes TechnolTher. 2011;13(1):33–42.
Article
CAS
Google Scholar
Chauhan G, Tabassum R, Mahajan A, Dwivedi OP, Mahendran Y, Kaur I, et al. Common variants of FTO and the risk of obesity and type 2 diabetes in Indians. J Hum Genet. 2011;56(10):720–6.
Article
CAS
PubMed
Google Scholar
Reuveni H, Flashner-Abramson E, Steiner L, Makedonski K, Song R, Shir A, et al. Therapeutic destruction of insulin receptor substrates for cancer treatment. Cancer Res. 2013;73(14):4383–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunetti A, Chiefari E, Foti D. Perspectives on the contribution of genetics to the pathogenesis of type 2 diabetes mellitus. RecentiProg Med. 2011;102:468–75.
Google Scholar
Zhu AN, Yang XX, Sun MY, Zhang ZX, Li M. Associations between INSR and MTOR polymorphisms in type 2 diabetes mellitus and diabetic nephropathy in a Northeast Chinese Han population. Genet Mol Res. 2015;14(1):1808–18.
Article
CAS
PubMed
Google Scholar
Bodhini D, Sandhiya M, Ghosh S, Majumder PP, Rao MR, Mohan V, Radha V. Association of His1085His INSR gene polymorphism with type 2 diabetes in South Indians. Diabetes Technol Ther. 2012;14(8):696–700.
Article
CAS
PubMed
Google Scholar
Barber TM, Franks S. The link between polycystic ovary syndrome and both Type 1 and Type 2 diabetes mellitus: what do we know today? Womens Health (Lond). 2012;8(2):147–54.
Article
CAS
Google Scholar
Lu D, Ventura-Holman T, Li J, McMurray RW, Subauste JS, Maher JF. Abnormal glucose homeostasis and pancreatic islet function in mice with inactivation of the Fem1b gene. Mol Cell Biol. 2005;25(15):6570–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corson GM, Charbonneau NL, Keene DR, Sakai LY. Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics. 2004;83(3):461–72.
Article
CAS
PubMed
Google Scholar
Wang Y, Garraoui A, Zeng L, Lai M, He F, Wang H, et al. FBN3 gene involved in pathogenesis of a Chinese family with Bardet-Biedl syndrome. Oncotarget. 2017;8(49):86718–25.
Article
PubMed
PubMed Central
Google Scholar