Lo KW, Teo PM, Hui AB, To KF, Tsang YS, Chan SY, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 2000;60:3348–53.
CAS
PubMed
Google Scholar
Luo Z, Zhang L, Li Z, Li X, Li G, Yu H, et al. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genet. 2012;5:3.
CAS
Google Scholar
Sriamporn S, Vatanasapt V, Pisani P, Yongchaiyudha S, Rungpitarangsri V. Environmental risk factors for nasopharyngeal carcinoma: a case-control study in northeastern Thailand. Cancer Epidemiol Biomark Prev. 1992;1:345–8.
CAS
Google Scholar
Henle G, Henle W. Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer. 1976;17:1–7.
Article
CAS
PubMed
Google Scholar
Raab-Traub N. Epstein-Barr virus and nasopharyngeal carcinoma. Semin Cancer Biol. 1992;3:297–307.
CAS
PubMed
Google Scholar
Armstrong RW, Armstrong MJ, Yu MC, Henderson BE. Salted fish and inhalants as risk factors for nasopharyngeal carcinoma in Malaysian Chinese. Cancer Res. 1983;43:2967–70.
CAS
PubMed
Google Scholar
Armstrong RW, Imrey PB, Lye MS, Armstrong MJ, Yu MC, Sani S. Nasopharyngeal carcinoma in Malaysian Chinese: occupational exposures to particles, formaldehyde and heat. Int J Epidemiol. 2000;29:991–8.
Article
CAS
PubMed
Google Scholar
Vaughan TL, Stewart PA, Teschke K, Lynch CF, Swanson GM, Lyon JL, et al. Occupational exposure to formaldehyde and wood dust and nasopharyngeal carcinoma. Occup Environ Med. 2000;57:376–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson BE, Louie E, SooHoo JJ, Buell P, Gardner MB. Risk factors associated with nasopharyngeal carcinoma. N Engl J Med. 1976;295:1101–6.
Article
CAS
PubMed
Google Scholar
Yu MC, Garabrant DH, Huang TB, Henderson BE. Occupational and other non-dietary risk factors for nasopharyngeal carcinoma in Guangzhou, China. Int J Cancer. 1990;45:1033–9.
Article
CAS
PubMed
Google Scholar
Yuan JM, Wang XL, Xiang YB, Gao YT, Ross RK, Yu MC. Non-dietary risk factors for nasopharyngeal carcinoma in Shanghai, China. Int J Cancer. 2000;85:364–9.
Article
CAS
PubMed
Google Scholar
Ekburanawat W, Ekpanyaskul C, Brennan P, Kanka C, Tepsuwan K, Temiyastith S, et al. Evaluation of non-viral risk factors for nasopharyngeal carcinoma in Thailand: results from a case-control study. Asian Pac J Cancer Prev. 2010;11:929–32.
PubMed
Google Scholar
Huang WY, Lin CC, Jen YM, Lin KT, Yang MH, Chen CM, et al. Association between adult otitis media and nasopharyngeal cancer: a nationwide population-based cohort study. Radiother Oncol. 2012;104:338–42.
Article
PubMed
Google Scholar
Hung SH, Chen PY, Lin HC, Ting J, Chung SD. Association of rhinosinusitis with nasopharyngeal carcinoma: a population-based study. Laryngoscope. 2014;124:1515–20.
Article
PubMed
Google Scholar
Tsou YA, Lin CC, Tai CJ, Tsai MH, Tsai TC, Chen CM. Chronic rhinosinusitis and the risk of nasopharyngeal cancer in a Taiwanese health study. Am J Rhinol Allergy. 2014;28:168–72.
Article
PubMed
Google Scholar
Issing WJ, Karkos PD. Atypical manifestations of gastro-oesophageal reflux. J R Soc Med. 2003;96:477–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fass R, Achem SR, Harding S, Mittal RK, Quigley E. Review article: supra-oesophageal manifestations of gastro-oesophageal reflux disease and the role of night-time gastro-oesophageal reflux. Aliment Pharmacol Ther. 2004;20(Suppl 9):26–38.
Article
PubMed
Google Scholar
Poelmans J, Tack J. Extraoesophageal manifestations of gastro-oesophageal reflux. Gut. 2005;54:1492–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrokhi F, Vaezi MF. Extra-esophageal manifestations of gastroesophageal reflux. Oral Dis. 2007;13:349–59.
Article
CAS
PubMed
Google Scholar
Madanick RD. Extraesophageal presentations of GERD: where is the science? Gastroenterol Clin N Am. 2014;43:105–20.
Article
Google Scholar
Dagli E, Yuksel A, Kaya M, Ugur KS, Turkay FC. Association of Oral Antireflux Medication with Laryngopharyngeal Reflux and Nasal Resistance. JAMA Otolaryngol Head Neck Surg. 2017;143:478–83.
Article
PubMed
PubMed Central
Google Scholar
Gray ST, Sedaghat AR. Treatment of laryngopharyngeal reflux may decrease subjective symptoms of nasal congestion and objective measures of nasal resistance. JAMA Otolaryngol Head Neck Surg. 2017;143:483–4.
Article
PubMed
Google Scholar
Mosca F, Rossillo V, Leone CA. Manifestations of gastro-pharyngo-laryngeal reflux disease. Acta Otorhinolaryngol Ital. 2006;26:247–51.
CAS
PubMed
PubMed Central
Google Scholar
Fink SM, Barwick KW, DeLuca V, Sanders FJ, Kandathil M, McCallum RW. The association of histologic gastritis with gastroesophageal reflux and delayed gastric emptying. J Clin Gastroenterol. 1984;6:301–9.
CAS
PubMed
Google Scholar
Bowrey DJ, Clark GW, Williams GT. Patterns of gastritis in patients with gastro-oesophageal reflux disease. Gut. 1999;45:798–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Little AG, DeMeester TR, Kirchner PT, O'Sullivan GC, Skinner DB. Pathogenesis of esophagitis in patients with gastroesophageal reflux. Surgery. 1980;88:101–7.
CAS
PubMed
Google Scholar
Dodds WJ, Dent J, Hogan WJ, Helm JF, Hauser R, Patel GK, et al. Mechanisms of gastroesophageal reflux in patients with reflux esophagitis. N Engl J Med. 1982;307:1547–52.
Article
CAS
PubMed
Google Scholar
Shub MD, Ulshen MH, Hargrove CB, Siegal GP, Groben PA, Askin FB. Esophagitis: a frequent consequence of gastroesophageal reflux in infancy. J Pediatr. 1985;107:881–4.
Article
CAS
PubMed
Google Scholar
Delahunty JE. Acid laryngitis. J Laryngol Otol. 1972;86:335–42.
Article
CAS
PubMed
Google Scholar
Ward PH, Berci G. Observations on the pathogenesis of chronic non-specific pharyngitis and laryngitis. Laryngoscope. 1982;92:1377–82.
Article
CAS
PubMed
Google Scholar
Ulualp SO, Toohill RJ, Hoffmann R, Shaker R. Pharyngeal pH monitoring in patients with posterior laryngitis. Otolaryngol Head Neck Surg. 1999;120:672–7.
Article
CAS
PubMed
Google Scholar
Cherry J, Siegel CI, Margulies SI, Donner M. Pharyngeal localization of symptoms of gastroesophageal reflux. Ann Otol Rhinol Laryngol. 1970;79:912–4.
Article
CAS
PubMed
Google Scholar
Barbero GJ. Gastroesophageal reflux and upper airway disease. Otolaryngol Clin N Am. 1996;29:27–38.
CAS
Google Scholar
Wise SK, Wise JC, DelGaudio JM. Association of nasopharyngeal and laryngopharyngeal reflux with postnasal drip symptomatology in patients with and without rhinosinusitis. Am J Rhinol. 2006;20:283–9.
Article
PubMed
Google Scholar
Poelmans J, Tack J, Feenstra L. Chronic middle ear disease and gastroesophageal reflux disease: a causal relation? Otol Neurotol. 2001;22:447–50.
Article
CAS
PubMed
Google Scholar
Tasker A, Dettmar PW, Panetti M, Koufman JA, Birchall P, Pearson JP. Is gastric reflux a cause of otitis media with effusion in children? Laryngoscope. 2002;112:1930–4.
Article
PubMed
Google Scholar
Serra A, Cocuzza S, Poli G, La Mantia I, Messina A, Pavone P. Otologic findings in children with gastroesophageal reflux. Int J Pediatr Otorhinolaryngol. 2007;71:1693–7.
Article
PubMed
Google Scholar
Al Saab F, Manoukian JJ, Al Sabah B, Almot S, Nguyen LH, Tewfik TL, et al. Linking laryngopharyngeal reflux to otitis media with effusion: pepsinogen study of adenoid tissue and middle ear fluid. J Otolaryngol Head Neck Surg. 2008;37:565–71.
Google Scholar
Sontag SJ, O'Connell S, Khandelwal S, Miller T, Nemchausky B, Schnell TG, et al. Most asthmatics have gastroesophageal reflux with or without bronchodilator therapy. Gastroenterology. 1990;99:613–20.
Article
CAS
PubMed
Google Scholar
Schnatz PF, Castell JA, Castell DO. Pulmonary symptoms associated with gastroesophageal reflux: use of ambulatory pH monitoring to diagnose and to direct therapy. Am J Gastroenterol. 1996;91:1715–8.
CAS
PubMed
Google Scholar
Mujica VR, Rao SS. Recognizing atypical manifestations of GERD. Asthma, chest pain, and otolaryngologic disorders may be due to reflux. Postgrad Med. 1999;105:53–6.
Article
CAS
PubMed
Google Scholar
Ulualp SO, Toohill RJ, Hoffmann R, Shaker R. Possible relationship of gastroesophagopharyngeal acid reflux with pathogenesis of chronic sinusitis. Am J Rhinol. 1999;13:197–202.
Article
CAS
PubMed
Google Scholar
DelGaudio JM. Direct nasopharyngeal reflux of gastric acid is a contributing factor in refractory chronic rhinosinusitis. Laryngoscope. 2005;115:946–57.
Article
PubMed
Google Scholar
Lin YH, Chang TS, Yao YC, Li YC. Increased risk of chronic sinusitis in adults with Gastroesophgeal reflux disease: a Nationwide population-based cohort study. Medicine (Baltimore). 2015;94:e1642.
Article
Google Scholar
DiBaise JK, Huerter JV, Quigley EM. Sinusitis and gastroesophageal reflux disease. Ann Intern Med. 1998;129:1078.
Article
CAS
PubMed
Google Scholar
Contencin P, Narcy P. Nasopharyngeal pH monitoring in infants and children with chronic rhinopharyngitis. Int J Pediatr Otorhinolaryngol. 1991;22:249–56.
Article
CAS
PubMed
Google Scholar
Contencin P, Viala P, Narcy P. Variations of nasopharyngeal pH in nasopharyngitis in children. Presse Med. 1991;20:1595–8.
CAS
PubMed
Google Scholar
Phipps CD, Wood WE, Gibson WS, Cochran WJ. Gastroesophageal reflux contributing to chronic sinus disease in children: a prospective analysis. Arch Otolaryngol Head Neck Surg. 2000;126:831–6.
Article
CAS
PubMed
Google Scholar
Aydin E, Tastan E, Aydogan F, Arslan N, Karaca G. Role of nasopharyngeal reflux in the etiology of otitis media with effusion. J Otolaryngol Head Neck Surg. 2011;40:499–503.
PubMed
Google Scholar
Pincus RL, Kim HH, Silvers S, Gold S. A study of the link between gastric reflux and chronic sinusitis in adults. Ear Nose Throat J. 2006;85:174–8.
PubMed
Google Scholar
Hashimoto K. The effect of reflux of bile juice on the development of residual stomach cancer. Nihon Geka Gakkai Zasshi. 1987;88:26–34.
CAS
PubMed
Google Scholar
Buchmann F, Baumer F, Eilles C. Significance of duodenogastric reflux in the pathogenesis of primary stomach cancer. Zentralbl Chir. 1988;113:170–3.
CAS
PubMed
Google Scholar
Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999;340:825–31.
Article
CAS
PubMed
Google Scholar
Shaheen N, Ransohoff DF. Gastroesophageal reflux, Barrett esophagus, and esophageal cancer: scientific review. JAMA. 2002;287:1972–81.
Article
PubMed
Google Scholar
Qadeer MA, Colabianchi N, Vaezi MF. Is GERD a risk factor for laryngeal cancer? Laryngoscope. 2005;115:486–91.
Article
PubMed
Google Scholar
Ward PH, Hanson DG. Reflux as an etiological factor of carcinoma of the laryngopharynx. Laryngoscope. 1988;98:1195–9.
CAS
PubMed
Google Scholar
Vereczkei A, Horvath OP, Varga G, Molnar TF. Gastroesophageal reflux disease and non-small cell lung cancer. Results of a pilot study. Dis Esophagus. 2008;21:457–60.
Article
CAS
PubMed
Google Scholar
Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res. 2005;589:47–65.
Article
CAS
PubMed
Google Scholar
Sereg-Bahar M, Jerin A, Jansa R, Stabuc B, Hocevar-Boltezar I. Pepsin and bile acids in saliva in patients with laryngopharyngeal reflux - a prospective comparative study. Clin Otolaryngol. 2015;40:234–9.
Article
CAS
PubMed
Google Scholar
Sereg-Bahar M, Jerin A, Hocevar-Boltezar I. Higher levels of total pepsin and bile acids in the saliva as a possible risk factor for early laryngeal cancer. Radiol Oncol. 2015;49:59–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shellman Z, Aldhahrani A, Verdon B, Mather M, Paleri V, Wilson J, et al. Bile acids: a potential role in the pathogenesis of pharyngeal malignancy. Clin Otolaryngol. 2017;42:969–73.
Article
CAS
PubMed
Google Scholar
Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.
Article
PubMed
PubMed Central
Google Scholar
Goldstein MG, Li Z. Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis. J Hematol Oncol. 2009;2:5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang WT, Ye H, Wei PP, Han BW, He B, Chen ZH, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 2016;9:117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins ND. The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer. 2012;12:121–32.
Article
CAS
PubMed
Google Scholar
Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007;121:2381–6.
Article
CAS
PubMed
Google Scholar
Sasaki CT, Issaeva N, Vageli DP. In vitro model for gastroduodenal reflux-induced nuclear factor-kappaB activation and its role in hypopharyngeal carcinogenesis. Head Neck. 2016;38:E1381–91.
Article
PubMed
Google Scholar
Lawrence T. The nuclear factor NF−+¦B pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dokka S, Shi X, Leonard S, Wang L, Castranova V, Rojanasakul Y. Interleukin-10-mediated inhibition of free radical generation in macrophages. Am J Physiol Lung Cell Mol Physiol. 2001;280:L1196.
Article
CAS
PubMed
Google Scholar
Wang CS, Liu SH, Peng J, Tang C, Zhu WG. Bile acids cycle disruption in patients with nasopharyngeal carcinoma promotes the elevation of interleukin-10 secretion. Afr Health Sci. 2015;15:1200–3.
Article
PubMed
PubMed Central
Google Scholar
Latorre E, Matheus N, Layunta E, Alcalde AI, Mesonero JE. IL-10 counteracts proinflammatory mediator evoked oxidative stress in caco-2 cells. Mediat Inflamm. 2014;2014:1–6.
Article
CAS
Google Scholar
Moreira AP, Dias-Melicio LA, Soares AMVC. Interleukin-10 but not transforming growth factor beta inhibits murine activated macrophages Paracoccidioides brasiliensis killing: effect on H2O2 and NO production. Cell Immunol. 2010;263:196–203.
Article
CAS
PubMed
Google Scholar
Tan SN, Sim SP. Bile acids at neutral and acidic pH induce apoptosis and gene cleavages in nasopharyngeal epithelial cells: implications in chromosome rearrangement. BMC Cancer. 2018;18:409.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bernstein C, Bernstein H, Garewal H, Dinning P, Jabi R, Sampliner RE, et al. A bile acid-induced apoptosis assay for colon cancer risk and associated quality control studies. Cancer Res. 1999;59:2353–7.
CAS
PubMed
Google Scholar
Bernstein C, Payne CM, Bernstein H. Bile Acids: Promoters or Carcinogens in Colon Cancer? J Carcinogene Mutagene. 2011;2:101e.
Article
Google Scholar
Fang Y, Chen X, Bajpai M, Verma A, Das KM, Souza RF, et al. Cellular origins and molecular mechanisms of Barrett's esophagus and esophageal adenocarcinoma. Ann N Y Acad Sci. 2013;1300:187–99.
Article
CAS
PubMed
Google Scholar
Filipski J, Leblanc J, Youdale T, Sikorska M, Walker PR. Periodicity of DNA folding in higher order chromatin structures. EMBO J. 1990;9:1319–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown DG, Sun XM, Cohen GM. Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem. 1993;268:3037–9.
CAS
PubMed
Google Scholar
Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993;12:3679–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Compton MM. A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev. 1992;11:105–19.
Article
CAS
PubMed
Google Scholar
Bortner CD, Oldenburg NB, Cidlowski JA. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995;5:21–6.
Article
CAS
PubMed
Google Scholar
Lechardeur D, Xu M, Lukacs GL. Contrasting nuclear dynamics of the caspase-activated DNase (CAD) in dividing and apoptotic cells. J Cell Biol. 2004;167:851–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cockerill PN, Garrard WT. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell. 1986;44:273–82.
Article
CAS
PubMed
Google Scholar
Shao JY, Wang HY, Huang XM, Feng QS, Huang P, Feng BJ, et al. Genome-wide allelotype analysis of sporadic primary nasopharyngeal carcinoma from southern China. Int J Oncol. 2000;17:1267–75.
CAS
PubMed
Google Scholar
van Drunen CM, Sewalt RG, Oosterling RW, Weisbeek PJ, Smeekens SC, van Driel R. A bipartite sequence element associated with matrix/scaffold attachment regions. Nucleic Acids Res. 1999;27:2924–30.
Article
PubMed
PubMed Central
Google Scholar
Strissel PL, Strick R, Tomek RJ, Roe BA, Rowley JD, Zeleznik L. DNA structural properties of AF9 are similar to MLL and could act as recombination hot spots resulting in MLL/AF9 translocations and leukemogenesis. Hum Mol Genet. 2000;9:1671–9.
Article
CAS
PubMed
Google Scholar
Strick R, Zhang Y, Emmanuel N, Strissel PL. Common chromatin structures at breakpoint cluster regions may lead to chromosomal translocations found in chronic and acute leukemias. Hum Genet. 2006;119:479–95.
Article
CAS
PubMed
Google Scholar
Tan SN, Sim SP, Khoo AS. Oxidative stress-induced chromosome breaks within the ABL gene: a model for chromosome rearrangement in nasopharyngeal carcinoma. Hum Genomics. 2018;12:29.
Article
PubMed
PubMed Central
Google Scholar
Frisch M, Frech K, Klingenhoff A, Cartharius K, Liebich I, Werner T. In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res. 2002;12:349–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh GB, Kramer JA, Krawetz SA. Mathematical model to predict regions of chromatin attachment to the nuclear matrix. Nucleic Acids Res. 1997;25:1419–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H, et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus. Gut. 2007;56:763–71.
Article
CAS
PubMed
Google Scholar
Nehra D, Howell P, Williams CP, Pye JK, Beynon J. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut. 1999;44:598–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iftikhar SY, Ledingham S, Steele RJ, Evans DF, Lendrum K, Atkinson M, et al. Bile reflux in columnar-lined Barrett's oesophagus. Ann R Coll Surg Engl. 1993;75:411–6.
CAS
PubMed
PubMed Central
Google Scholar
Junqueira JC, Penna FJ. Nasopharyngeal pH and gastroesophageal reflux in children with chronic respiratory disease. J Pediatr. 2007;83:225–32.
Google Scholar
Tan SN, Sim SP, Khoo AS. Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell Biosci. 2016;6:35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ebert SN, Shtrom SS, Muller MT. Topoisomerase II cleavage of herpes simplex virus type I DNA in vivo is replication dependent. J Virol. 1990;64:4059–66.
CAS
PubMed
PubMed Central
Google Scholar
Broeker PL, Super HG, Thirman MJ, Pomykala H, Yonebayashi Y, Tanabe S, et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood. 1996;87:1912–22.
CAS
PubMed
Google Scholar
Jeffs AR, Benjes SM, Smith TL, Sowerby SJ, Morris CM. The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukaemia. Hum Mol Genet. 1998;7:767–76.
Article
CAS
PubMed
Google Scholar
Cynthia PN, Sim SP. Etoposide-induced apoptosis results in chromosome breaks within the AF9 gene: its implication in chromosome rearrangement in leukaemia. Adv Biosci Biotechnol. 2012;3:686–94.
Article
CAS
Google Scholar
Bohnhorst I, Jawad S, Lange B, Kjeldsen J, Hansen JM, Kjeldsen AD. Prevalence of chronic rhinosinusitis in a population of patients with gastroesophageal reflux disease. Am J Rhinol Allergy. 2015;29:e70–4.
Article
PubMed
Google Scholar
Chodosh PL. Gastro-esophago-pharyngeal reflux. Laryngoscope. 1977;87:1418–27.
Article
CAS
PubMed
Google Scholar
Contencin P, Maurage C, Ployet MJ, Seid AB, Sinaasappel M. Gastroesophageal reflux and ENT disorders in childhood. Int J Pediatr Otorhinolaryngol. 1995;32(Suppl):S135–44.
Article
PubMed
Google Scholar
Jaspersen D. Extra-esophageal disorders in gastroesophageal reflux disease. Dig Dis. 2004;22:115–9.
Article
PubMed
Google Scholar
Blumin JH, Merati AL, Toohill RJ. Duodenogastroesophageal reflux and its effect on extraesophageal tissues: a review. Ear Nose Throat J. 2008;87:234–7.
PubMed
Google Scholar
Aldhahrani A, Verdon B, Ward C, Pearson J. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases. ERJ Open Res. 2017;3.
Herbella FA, Neto SP, Santoro IL, Figueiredo LC. Gastroesophageal reflux disease and non-esophageal cancer. World J Gastroenterol. 2015;21:815–9.
Article
PubMed
PubMed Central
Google Scholar
Sperry AO, Blasquez VC, Garrard WT. Dysfunction of chromosomal loop attachment sites: illegitimate recombination linked to matrix association regions and topoisomerase II. Proc Natl Acad Sci U S A. 1989;86:00107-16.
Blasquez VC, Sperry AO, Cockerill PN, Garrard WT. Protein:DNA interactions at chromosomal loop attachment sites. Genome. 1989;31:503–9.
Article
CAS
PubMed
Google Scholar
Razin SV, Shen K, Ioudinkova E, Scherrer K. Functional analysis of DNA sequences located within a cluster of DNase I hypersensitive sites colocalizing with a MAR element at the upstream border of the chicken alpha-globin gene domain. J Cell Biochem. 1999;74:38–49.
Article
CAS
PubMed
Google Scholar
Swansbury GJ, Slater R, Bain BJ, Moorman AV, Secker-Walker LM. Hematological malignancies with t(9;11)(p21-22;q23)--a laboratory and clinical study of 125 cases. European 11q23 workshop participants. Leukemia. 1998;12:792–800.
Article
CAS
PubMed
Google Scholar
Donev R, Horton R, Beck S, Doneva T, Vatcheva R, Bowen WR, et al. Recruitment of heterogeneous nuclear ribonucleoprotein A1 in vivo to the LMP/TAP region of the major histocompatibility complex. J Biol Chem. 2003;278:5214–26.
Article
CAS
PubMed
Google Scholar
Ostermeier GC, Liu Z, Martins RP, Bharadwaj RR, Ellis J, Draghici S, et al. Nuclear matrix association of the human b-globin locus utilizing a novel approach to quantitative real-time PCR. Nucleic Acids Res. 2003;31:3257–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thilmony R, Guttman ME, Lin JW, Blechl AE. The wheat HMW-glutenin 1Dy10 gene promoter controls endosperm expression in Brachypodium distachyon. GM Crops Food. 2014;5:36–43.
Article
PubMed
Google Scholar
Kas E, Chasin LA. Anchorage of the Chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intragenic region. J Mol Biol. 1987;198:677–92.
Article
CAS
PubMed
Google Scholar
Romig H, Ruff J, Fackelmayer FO, Patil MS, Richter A. Characterisation of two intronic nuclear-matrix-attachment regions in the human DNA topoisomerase I gene. Eur J Biochem. 1994;221:411–9.
Article
CAS
PubMed
Google Scholar
Mielke C, Kohwi Y, Kohwi-Shigematsu T, Bode J. Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry. 1990;29:7475–85.
Article
CAS
PubMed
Google Scholar
Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, et al. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science. 1992;255:195–7.
Article
CAS
PubMed
Google Scholar
Bode J, Schlake T, Rios-Ramirez M, Mielke M, Stengert M, Kay V, et al. Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci. Int Rev Cytol. 1995;162A:389–454.
CAS
PubMed
Google Scholar
Boulikas T. Chromatin domains and prediction of MAR sequences. Int Rev Cytol. 1995;162A:279–388.
CAS
PubMed
Google Scholar
Mimori K, Druck T, Inoue H, Alder H, Berk L, Mori M, et al. Cancer-specific chromosome alterations in the constitutive fragile region FRA3B. Proc Natl Acad Sci U S A. 1999;96:7456–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arlt MF, Miller DE, Beer DG, Glover TW. Molecular characterization of FRAXB and comparative common fragile site instability in cancer cells. Genes Chromosomes Cancer. 2002;33:82–92.
Article
CAS
PubMed
Google Scholar
Bae YS, Kawasaki I, Ikeda H, Liu LF. Illegitimate recombination mediated by calf thymus DNA topoisomerase II in vitro. Proc Nati Acad Sci USA. 1988;85:2076–80.
Article
CAS
Google Scholar
Gale KC, Osheroff N. Intrinsic intermolecular DNA Ligation activity of Eukaryotic Topoisomerase II. Potential roles in recombination. J Biol Chem. 1992;267:12090–7.
CAS
PubMed
Google Scholar
Kas E, Poljak L, Adachi Y, Laemmli UK. A model for chromatin opening: stimulation of topoisomerase II and restriction enzyme cleavage of chromatin by distamycin. EMBO J. 1993;12:115–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao H, Li TK, Yang JM, Liu LF. Acidic pH induces topoisomerase II-mediated DNA damage. Proc Natl Acad Sci U S A. 2003;100:5205–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li TK, Chen AY, Yu C, Mao Y, Wang H, Liu LF. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 1999;13:1553–60.
Article
CAS
PubMed
PubMed Central
Google Scholar