Jacobson DL, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–43.
Article
CAS
PubMed
Google Scholar
Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun Rev. 2003;2(3):119–25.
Article
PubMed
Google Scholar
Al-Dhaher FF, Pope JE, Ouimet JM. Determinants of morbidity and mortality of systemic sclerosis in Canada. Semin Arthritis Rheum. 2010;39(4):269–77.
Article
PubMed
Google Scholar
Silman AJ. Scleroderma and survival. Ann Rheum Dis. 1991;50(4):267–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferdowsi N, et al. Development and validation of the scleroderma clinical trials consortium damage index (SCTC-DI): a novel instrument to quantify organ damage in systemic sclerosis. Ann Rheum Dis. 2019.
Eckes B, et al. Molecular and cellular basis of scleroderma. J Mol Med (Berl). 2014;92(9):913–24.
Article
CAS
Google Scholar
Gilchrist FC, et al. Class II HLA associations with autoantibodies in scleroderma: a highly significant role for HLA-DP. Genes Immun. 2001;2(2):76–81.
Article
CAS
PubMed
Google Scholar
Arnett FC. HLA and autoimmunity in scleroderma (systemic sclerosis). Int Rev Immunol. 1995;12(2–4):107–28.
Article
CAS
PubMed
Google Scholar
Gladman DD, et al. HLA markers for susceptibility and expression in scleroderma. J Rheumatol. 2005;32(8):1481–7.
CAS
PubMed
Google Scholar
Assassi S, et al. Genetics of scleroderma: implications for personalized medicine? BMC Med. 2013;11:9.
Article
PubMed
PubMed Central
Google Scholar
Mayes MD. The genetics of scleroderma: looking into the postgenomic era. Curr Opin Rheumatol. 2012;24(6):677–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altorok N, et al. Epigenetics, the holy grail in the pathogenesis of systemic sclerosis. Rheumatology (Oxford). 2015;54(10):1759–70.
Article
CAS
Google Scholar
Makino T, Jinnin M. Genetic and epigenetic abnormalities in systemic sclerosis. J Dermatol. 2016;43(1):10–8.
Article
CAS
PubMed
Google Scholar
Mau T, Yung R. Potential of epigenetic therapies in non-cancerous conditions. Front Genet. 2014;5:438.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pulverer W, et al. The stem cell signature of CHH/CHG methylation is not present in 271 cancer associated 5'UTR gene regions. Biochimie. 2012;94(11):2345–52.
Article
CAS
PubMed
Google Scholar
Tirado-Magallanes R, et al. Whole genome DNA methylation: beyond genes silencing. Oncotarget. 2017;8(3):5629–37.
Article
PubMed
Google Scholar
Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31.
Article
PubMed
PubMed Central
Google Scholar
Reinius LE, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7):e41361.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Reilly S, Hugle T, van Laar JM. T cells in systemic sclerosis: a reappraisal. Rheumatology (Oxford). 2012;51(9):1540–9.
Article
CAS
Google Scholar
Liu Y, et al. Bis-SNP: combined DNA methylation and SNP calling for bisulfite-seq data. Genome Biol. 2012;13(7):R61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaffe AE, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol. 2012;41(1):200–9.
Article
PubMed
PubMed Central
Google Scholar
Cavalcante RG, Sartor MA. annotatr: genomic regions in context. Bioinformatics. 2017;33(15):2381–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer A, et al. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–30.
Article
PubMed
CAS
Google Scholar
Turgeon M, et al. Principal component of explained variance: an efficient and optimal data dimension reduction framework for association studies. Stat Methods Med Res. 2018;27(5):1331–50.
Article
PubMed
Google Scholar
Toyama T, et al. Therapeutic targeting of TAZ and YAP by dimethyl Fumarate in systemic sclerosis fibrosis. J Invest Dermatol. 2018;138(1):78–88.
Article
CAS
PubMed
Google Scholar
Bergmann C, Distler JH. Canonical Wnt signaling in systemic sclerosis. Lab Investig. 2016;96(2):151–5.
Article
CAS
PubMed
Google Scholar
Wei J, et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma? Arthritis Rheum. 2011;63(6):1707–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei J, et al. Wnt/beta-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 2012;64(8):2734–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao L, Lafyatis R, Burkly LC. Increased dermal collagen bundle alignment in systemic sclerosis is associated with a cell migration signature and role of Arhgdib in directed fibroblast migration on aligned ECMs. PLoS One. 2017;12(6):e0180751.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sun H, et al. Netrin-1 regulates Fibrocyte accumulation in the Decellularized fibrotic Sclerodermatous lung microenvironment and in Bleomycin-induced pulmonary fibrosis. Arthritis Rheumatol. 2016;68(5):1251–61.
CAS
PubMed
PubMed Central
Google Scholar
Lagares D, et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat Med. 2017;23(12):1405–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koch M, et al. Expression of type XXIII collagen mRNA and protein. J Biol Chem. 2006;281(30):21546–57.
Article
CAS
PubMed
Google Scholar
Altorok N, et al. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis. 2015;74(8):1612–20.
Article
CAS
PubMed
Google Scholar
Bayle J, et al. Increased expression of Wnt2 and SFRP4 in tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J Invest Dermatol. 2008;128(4):871–81.
Article
CAS
PubMed
Google Scholar
Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5(4):200–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varga J, Whitfield ML. Transforming growth factor-beta in systemic sclerosis (scleroderma). Front Biosci (Schol Ed). 2009;1:226–35.
Article
Google Scholar
McKarns SC, Schwartz RH. Distinct effects of TGF-beta 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J Immunol. 2005;174(4):2071–83.
Article
CAS
PubMed
Google Scholar
Ding W, et al. Genome-wide DNA methylation analysis in systemic sclerosis reveals Hypomethylation of IFN-associated genes in CD4(+) and CD8(+) T cells. J Invest Dermatol. 2018;138(5):1069–77.
Article
CAS
PubMed
Google Scholar
Freude K, et al. Mutations in the FTSJ1 gene coding for a novel S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am J Hum Genet. 2004;75(2):305–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang F, et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 2015;16:52.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chahrour M, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320(5880):1224–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, et al. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann Rheum Dis. 2018;77(8):1208–18.
PubMed
Google Scholar
Selmi C, et al. X chromosome gene methylation in peripheral lymphocytes from monozygotic twins discordant for scleroderma. Clin Exp Immunol. 2012;169(3):253–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee R, et al. Enhanced chemokine-receptor expression, function, and signaling in healthy African American and scleroderma-patient monocytes are regulated by caveolin-1. Fibrogenesis Tissue Repair. 2015;8:11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Takahashi T, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: possible roles in scleroderma. J Exp Med. 2017;214(4):1129–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu T, et al. The anti-angiogenic role of discoidin domain receptor 2 (DDR2) in laser-induced choroidal neovascularization. J Mol Med (Berl). 2015;93(2):187–98.
Article
CAS
Google Scholar
Zhang S, et al. A host deficiency of discoidin domain receptor 2 (DDR2) inhibits both tumour angiogenesis and metastasis. J Pathol. 2014;232(4):436–48.
Article
CAS
PubMed
Google Scholar
Makino K, et al. Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts. J Invest Dermatol. 2013;133(1):110–9.
Article
CAS
PubMed
Google Scholar
Brena, R.M. and J.F. Costello, Genome-epigenome interactions in cancer. Hum Mol Genet, 2007. 16 Spec No 1: p. R96–105.
Almouzni G, et al. Relationship between genome and epigenome--challenges and requirements for future research. BMC Genomics. 2014;15:487.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carmona FD, et al. New insight on the Xq28 association with systemic sclerosis. Ann Rheum Dis. 2013;72(12):2032–8.
Article
CAS
PubMed
Google Scholar
Piha-Gossack A, Sossin W, Reinhardt DP. The evolution of extracellular fibrillins and their functional domains. PLoS One. 2012;7(3):e33560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tocchioni F, et al. Pectus excavatum and heritable disorders of the connective tissue. Pediatr Rep. 2013;5(3):e15.
Article
PubMed
PubMed Central
Google Scholar
Dai C, et al. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells. J Biol Chem. 2015;290(37):22423–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pendergrass SA, et al. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol. 2012;132(5):1363–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wahl S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–6.
Article
CAS
PubMed
Google Scholar
Liang L, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015;520(7549):670–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richardson TG, et al. Mendelian randomization analysis identifies CpG sites as putative mediators for genetic influences on cardiovascular disease risk. Am J Hum Genet. 2017;101(4):590–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angiolilli C, et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol. 2018;14(11):657–73.
Article
PubMed
Google Scholar