Finucane MM, Stevens GA, Cowan M, Lin JK, Paciorek CJ, Singh GM, et al. HHS public access participants. Lancet. 2011;377(9765):557–67.
Article
Google Scholar
Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet [Internet]. 2014;384(9945):766–81.
Article
Google Scholar
Kelishadi R. Childhood overweight, obesity, and the metabolic syndrome in developing countries. Epidemiol Rev. 2007;29(1):62–76.
Article
Google Scholar
Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32(9):1431–7.
Article
CAS
Google Scholar
Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–89.
Article
Google Scholar
Al-Daghri NM, Al-Attas OS, Wani K, Alnaami AM, Sabico S, Al-Ajlan A, et al. Sensitivity of various adiposity indices in identifying cardiometabolic diseases in Arab adults. Cardiovasc Diabetol. 2015;14(1):1–8.
Article
Google Scholar
Yong L, GuangHui T, WeiWei T, LiPing L, XiaoSong Q. Can body mass index, waist circumference, waist-hip ratio and waist-height ratio predict the presence of multiple metabolic risk factors in Chinese subjects? BMC Public Health [Internet]. 2011;11(35):1–10. https://doi.org/10.1186/1471-2458-11-35.
Saqlain M, Akhtar Z, Karamat R, Iqbal M, Fiaz M, Zafar MM, et al. Body mass index versus other adiposity traits: best predictor of cardiometabolic risk. Iran J Public Health. 2019;48(12):2224–31.
Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. NIH Public Access. 2012;19(5):1083–9. https://doi.org/10.1038/oby.2011.38.
Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care [Internet]. 2010;33(4):920–2. https://doi.org/10.2337/dc09-1825.
Article
Google Scholar
Bastiani M, Parton RG. Caveolae at a glance. J Cell Sci. 2010;123(22):3831–6.
Article
CAS
Google Scholar
Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev. 2004;84(4):1341–79.
Article
CAS
Google Scholar
Frühbeck G. The Sir David Cuthbertson Medal Lecture Hunting for new pieces to the complex puzzle of obesity. Proc Nutr Soc. 2006;65(04):329–47.
Google Scholar
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8(3):185–94.
Article
CAS
Google Scholar
Frühbeck G, López M, Diéguez C. Role of caveolins in body weight and insulin resistance regulation. Trends Endocrinol Metab [Internet]. 2007;18(5):177–82.
Article
Google Scholar
Song KS, Tang Z, Li S, Lisanti MP. Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin–caveolin interactions. J Biol Chem [Internet]. 1997;272(7):4398–403. https://doi.org/10.1074/jbc.272.7.4398.
Article
CAS
Google Scholar
Inokuchi J. Insulin resistance as a membrane microdomain disorder. Biol Pharm Bull [Internet]. 2006;29(8):1532–7.
Article
CAS
Google Scholar
Parton RG, Hanzal-Bayer M, Hancock JF. Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci. 2006;119(5):787–96.
Article
CAS
Google Scholar
Williams TM, Lisanti MP. The Caveolin genes: from cell biology to medicine. Ann Med. 2004;36(8):584–95.
Article
CAS
Google Scholar
Frank PG, Cheung MWC, Pavlides S, Llaverias G, Park DS, Lisanti MP. Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Hear Circ Physiol. 2006;291(2):H677–86. https://doi.org/10.1152/ajpheart.01092.2005.
Hahn-Obercyger M, Graeve L, Madar Z. A high-cholesterol diet increases the association between Caveolae and insulin receptors in rat liver. J Lipid Res [Internet]. 2009;50(1):98–107. https://doi.org/10.1194/jlr.M800441-JLR200.
Article
CAS
Google Scholar
Barbieiri P, Nunes JC, Torres AG, Nishimura RY, Zuccolotto DCC, Crivellenti LC, et al. Indices of dietary fat quality during midpregnancy is associated with gestational diabetes. Nutrition. 2016;32(6):656–61.
Article
CAS
Google Scholar
Lopez IP, Milagro FI, Marti A, Moreno-Aliaga MJ, Martinez JA, De Miguel C. High-fat feeding period affects gene expression in rat white adipose tissue. Mol Cell Biochem [Internet]. 2005;275(1–2):109–15. https://doi.org/10.1007/s11010-005-1082-z.
Article
CAS
Google Scholar
Gómez-Ruiz A, Milagro FI, Campión J, Martínez JA, De Miguel C. Caveolin expression and activation in retroperitoneal and subcutaneous adipocytes: Influence of a high-fat diet. J Cell Physiol. 2010;225(1):206–13.
Article
Google Scholar
Mitchell DT, Korslund MK, Brewer BK, Novascone MA. Development and validation of the cholesterol-saturated fat index (CSI) Scorecard. J Am Diet Assoc [Internet]. 1996;96(2):132–6.
Article
CAS
Google Scholar
Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79.
Article
CAS
Google Scholar
Mirmiran P, Hosseini Esfahani F, Mehrabi Y, Hedayati M, Azizi F. Reliability and relative validity of an FFQ for nutrients in the Tehran Lipid and Glucose Study. Public Health Nutr. 2010;13(5):654–62.
Article
Google Scholar
Abaj F. Caveolin-1 genetic polymorphisms interact with fatty acid types to modulate metabolic syndrome. Br J Nutr. 2022;127(9):1281–8. https://doi.org/10.1017/S0007114521002221.
Aadahl M, Jørgensen T. Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc. 2003;35(7):1196–202.
Article
Google Scholar
Catalán V, Gómez-Ambrosi J, Rodríguez A, Silva C, Rotellar F, Gil MJ, et al. Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clin Endocrinol (Oxf). 2008;68(2):213–9.
Google Scholar
Frank PG, Pavlides S, Cheung MWC, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol. 2008;295(1):242–9.
Article
Google Scholar
Fernández-Real JM, Catalán V, Moreno-Navarrete JM, Gómez-Ambrosi J, Ortega FJ, Rodriguez-Hermosa JI, et al. Study of caveolin-1 gene expression in whole adipose tissue and its subfractions and during differentiation of human adipocytes. Nutr Metab. 2010;7:1–9.
Article
Google Scholar
Blus E, Wojciechowska-Kulik A, Majewska E, Baj Z. Usefulness of new indicators of obesity (BAI and VAI) in estimation of weight reduction. J Am Coll Nutr. 2020;39(2):171–7.
Article
CAS
Google Scholar
Jabłonowska-Lietz B, Wrzosek M, Włodarczyk M, Nowicka G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol Pol. 2017;75(11):1185–91.
Article
Google Scholar
Garg A, Agarwal AK. Caveolin-1: a new locus for human lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1183–5.
Article
CAS
Google Scholar
Su X, Abumrad NA. Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab [Internet]. 2009;20(2):72–7.
Article
CAS
Google Scholar
Pilch PF, Liu L. Fat caves: Caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab. 2011;22(8):318–24.
Article
CAS
Google Scholar
Grayson TH, Chadha PS, Bertrand PP, Chen H, Morris MJ, Senadheera S, et al. Increased caveolae density and caveolin-1 expression accompany impaired NO-mediated vasorelaxation in diet-induced obesity. Histochem Cell Biol. 2013;139(2):309–21.
Article
CAS
Google Scholar
Otis JP, Shen M-C, Quinlivan V, Anderson JL, Farber SA. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech [Internet]. 2017;10(3):283–95.
CAS
Google Scholar
Gámez-Ruiz A, Milagro FI, Campián J, Martínez JA, De Miguel C. High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling. Lipids Health Dis. 2011;10:1–10.
Google Scholar
Cohen AW, Razani B, Schubert W, Williams TM, Wang XB, Iyengar P, et al. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes [Internet]. 2004;53(5):1261–70. https://doi.org/10.2337/diabetes.53.5.1261.
Article
CAS
Google Scholar
Chang C-C, Chen C-Y, Wen H-C, Huang C-Y, Hung M-S, Lu H-C, et al. Caveolin-1 secreted from adipose tissues and adipocytes functions as an adipogenesis enhancer. Obesity [Internet]. 2017;25(11):1932–40. https://doi.org/10.1002/oby.21970.
Article
CAS
Google Scholar
Perona JS. PT NU SC. BBA—biomembr [Internet]. 2017. https://doi.org/10.1016/j.bbamem.2017.04.015.
Chapkin RS, Mcmurray DN, Davidson LA, Patil BS, Fan Y, Lupton JR. Review article bioactive dietary long-chain fatty acids: emerging mechanisms of action. Br J Nutr. 2008;100(6)1152–7. https://doi.org/10.1017/S0007114508992576.
Lay S Le, Li Q, Proschogo N, Rodriguez M, Gunaratnam K, Cartland S, et al. Caveolin-1-dependent and -independent membrane domains. J Lipid Res. 2009;50(8):1609–20. https://doi.org/10.1194/jlr.M800601-JLR200.
Scherer PE, Lisanti MP, Baldini G, Sargiacomo M, Mastick CC, Lodish HF. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol. 1994;127(5):1233–43.
Article
CAS
Google Scholar
Razani B, Zhang XL, Bitzer M, Von Gersdorff G, Böttinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF-β type I receptor. J Biol Chem. 2001;276(9):6727–38.
Article
CAS
Google Scholar
Felley-Bosco E, Bender FC, Courjault-Gautier F, Bron C, Quest AFG. Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc Natl Acad Sci USA. 2000;97(26):14334–9.
Article
CAS
Google Scholar